Selective Extraction of Gold with Polymeric Inclusion Membranes Based on Salen Ligands with Electron- Accepting Substituents

Author(s):  
Luis Fernando Campo-Cobo ◽  
Maicol Leandro Pérez-Urbano ◽  
Tania Milena Gutiérrez-Valencia ◽  
Olga Lucía Hoyos-Saavedra ◽  
Germán Cuervo-Ochoa
Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


ACS Omega ◽  
2021 ◽  
Author(s):  
Paula Andrea Hernandez ◽  
Miaomiao Zhou ◽  
Igor Vassilev ◽  
Stefano Freguia ◽  
Yang Zhang ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1577
Author(s):  
Marco Mora-Granados ◽  
David González-Gómez ◽  
Jin Su Jeong ◽  
Alejandrina Gallego-Picó

Studies for monitoring the bioavailability of dietary flavonoid compounds generate great interest. Among them, low-molecular-weight phenolic acids, secondary metabolites present in colonic catabolism and urinary excretion, have been proposed as biomarkers of polyphenol intake. Using 4-hydroxyphenylacetic acid as a template, a molecularly imprinted polymer (MIP) was synthesized for selective extraction of these hydroxylated metabolites from human urine samples and posterior analysis in an HPLC-DAD-MS system. Polymers were characterized by Scanning electron microscopy (SEM), Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Brunauer-Emmett-Teller (BET) method, and binding experiments. MIP presents specific recognition ability for template and analogues molecules. This capacity of recognition and the pH dependence of the binding strength was also studied. The method was validated over a concentration range of 0.25–40 mg/L, r2 > 0.995. In the optimized conditions, the recovery value was 94% with RSD 1.2%. The Limit of Detection (LOD) and Limit of Quantification (LOQ) were 1.22 and 3.69 mg/L, respectively. In our knowledge, it is the first time that this methodology is applied to analyze urinary catabolites of the polyphenol compound and to provide a specific method and simple analysis alternative. The selective extraction of these metabolites improves the application and results obtained by other less sensitive analysis methods than the validation method. It also facilitates the development of new screening methods.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2751
Author(s):  
Damian Jagleniec ◽  
Marcin Wilczek ◽  
Jan Romański

Combining three features—the high affinity of squaramides toward anions, cooperation in ion pair binding and preorganization of the binding domains in the tripodal platform—led to the effective receptor 2. The lack of at least one of these key elements in the structures of reference receptors 3 and 4 caused a lower affinity towards ion pairs. Receptor 2 was found to form an intramolecular network in wet chloroform, which changed into inorganic–organic associates after contact with ions and allowed salts to be extracted from an aqueous to an organic phase. The disparity in the binding mode of 2 with sulfates and with other monovalent anions led to the selective extraction of extremely hydrated sulfate anions in the presence of more lipophilic salts, thus overcoming the Hofmeister series.


Sign in / Sign up

Export Citation Format

Share Document