scholarly journals Use of Three-Dimensional Basement Membrane Cultures to Model Oncogene-Induced Changes in Mammary Epithelial Morphogenesis

2004 ◽  
Vol 9 (4) ◽  
pp. 297-310 ◽  
Author(s):  
Kenna R. Mills Shaw ◽  
Carolyn N. Wrobel ◽  
Joan S. Brugge
2021 ◽  
Author(s):  
Yuina Hirose ◽  
Yohei Hirai

Mammary epithelia undergo dramatic morphogenesis after puberty. During pregnancy, luminal epithelial cells in ductal trees are arranged to form well-polarized cystic structures surrounded by a myoepithelial cell layer, an active supplier of the basement membrane (BM). Here, we identified a novel regulatory mechanism in this process by using a reconstituted BM-based three-dimensional culture and aggregates of a model cell line EpH4, which had been manipulated for inducible expression of a t-SNARE protein syntaxin4, either in an intact or signal peptide-connected form, and those genetically deficient in syntaxin4. We found that cells extruded syntaxin4 upon stimulation with the lactogenic hormone, prolactin, which in turn accelerated the turnover of E-cadherin. In response to extracellular expression of syntaxin4, cell populations that were less affected by BM actively migrated and integrated into the BM-faced cell layer. Concurrently, the BM-faced cells, which were simultaneously stimulated with syntaxin4 and BM, acquired unique epithelial characteristics to undergo dramatic cellular arrangement for cyst formation. These results highlight the importance of the concerted action of extracellular syntaxin4 extruded by the lactogenic hormone and BM components in epithelial morphogenesis.


2007 ◽  
Vol 104 (18) ◽  
pp. 7438-7443 ◽  
Author(s):  
Xiaoming Ju ◽  
Sanjay Katiyar ◽  
Chenguang Wang ◽  
Manran Liu ◽  
Xuanmao Jiao ◽  
...  

The serine threonine kinase Akt1 has been implicated in the control of cellular metabolism, survival and growth. Here, disruption of the ubiquitously expressed member of the Akt family of genes, Akt1, in the mouse demonstrates a requirement for Akt1 in ErbB2-induced mammary tumorigenesis. Akt1 deficiency delayed tumor growth and reduced lung metastases, correlating with a reduction in phosphorylation of the Akt1 target, tuberous sclerosis 2 (TSC2) at Ser-939. Akt1-deficient mammary epithelial tumor cells (MEC) were reduced in size and proliferative capacity, with reduced cyclin D1 and p27KIP1 abundance. Akt1 deficiency abrogated the oncogene-induced changes in polarization of MEC in three-dimensional culture and reverted oncogene-induced relocalization of the phosphorylated ezrin–radixin–moesin proteins. Akt1 increased MEC migration across an endothelial cell barrier, enhancing the persistence of migratory directionality. An unbiased proteomic analysis demonstrated Akt1 mediated MEC migration through paracrine signaling via induction of expression and secretion of CXCL16 and MIP1γ. Akt1 governs MEC polarity, migratory directionality and breast cancer onset induced by ErbB2 in vivo.


2021 ◽  
Author(s):  
Maria Fankhaenel ◽  
Farahnaz Sadat Golestan Hashemi ◽  
Manal Mosa Hosawi ◽  
Larissa Mourao ◽  
Paul Skipp ◽  
...  

Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved Gαi-LGN-NuMA complex. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as a novel interactor of LGN in mammary epithelial cells. ANXA1 acts independently of Gαi to instruct the accumulation of LGN and NuMA at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of ANXA1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and lumen formation in three-dimensional (3D) primary mammary organoids. Our findings establish ANXA1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.


1995 ◽  
Vol 15 (6) ◽  
pp. 3398-3404 ◽  
Author(s):  
P Y Desprez ◽  
E Hara ◽  
M J Bissell ◽  
J Campisi

Cell proliferation and differentiation are precisely coordinated during the development and maturation of the mammary gland, and this balance invariably is disrupted during carcinogenesis. Little is known about the cell-specific transcription factors that regulate these processes in the mammary gland. The mouse mammary epithelial cell line SCp2 grows well under standard culture conditions but arrests growth, forms alveolus-like structures, and expresses beta-casein, a differentiation marker, 4 to 5 days after exposure to basement membrane and lactogenic hormones (differentiation signals). We show that this differentiation entails a marked decline in the expression of Id-1, a helix-loop-helix (HLH) protein that inactivates basic HLH transcription factors in other cell types. SCp2 cells stably transfected with an Id-1 expression vector grew more rapidly than control cells under standard conditions, but in response to differentiation signals, they arrested growth and formed three-dimensional structures similar to those of control cells. Id-1-expressing cells did not, however, express beta-casein. Moreover, 8 to 10 days after receiving differentiation signals, they lost three-dimensional organization, invaded the basement membrane, and then resumed growth. SCp2 cells expressing an Id-1 antisense vector grew more slowly than controls; in response to differentiation signals, they remained stably growth arrested and fully differentiated, as did control cells. We suggest that Id-1 renders cells refractory to differentiation signals and receptive to growth signals by inactivating one or more basic HLH proteins that coordinate growth and differentiation in the mammary epithelium.


2006 ◽  
Vol 17 (7) ◽  
pp. 2963-2975 ◽  
Author(s):  
Yasushi Shintani ◽  
Margaret J. Wheelock ◽  
Keith R. Johnson

During epithelial-to-mesenchymal transitions (EMTs), cells must change their interactions with one another and with their extracellular matrix in a synchronized manner. To characterize signaling pathways cells use to coordinate these changes, we used NMuMG mammary epithelial cells. We showed that these cells become fibroblastic and scattered, with increased N-cadherin expression when cultured on collagen I. Rac1 and c-Jun NH2-terminal kinase (JNK) were activated when cells were plated on collagen I, and dominant inhibitory Rac1 (RacN17) or inhibition of JNK signaling prevented collagen I–induced morphological changes and N-cadherin up-regulation. Furthermore, inhibiting phosphoinositide-3 kinase (PI3K) activity prevented Rac1 and JNK activation as well as collagen I–induced N-cadherin up-regulation. These data implicate PI3K–Rac1–JNK signaling in collagen I–induced changes in NMuMG cells. To establish a role for N-cadherin in collagen I–induced cell scattering, we generated N-cadherin overexpressing and knockdown NMuMG cells and showed that knocking down N-cadherin expression prevented collagen I–induced morphological changes. Motility assays showed that cells overexpressing N-cadherin were significantly more motile than mock-transfected cells and that N-cadherin-mediated motility was collagen I dependent. In addition, we showed that cord formation and branching in three-dimensional culture (EMT-dependent events) required N-cadherin expression and PI3K–Rac1–JNK signaling.


Methods ◽  
2003 ◽  
Vol 30 (3) ◽  
pp. 256-268 ◽  
Author(s):  
Jayanta Debnath ◽  
Senthil K. Muthuswamy ◽  
Joan S. Brugge

2017 ◽  
Vol 28 (22) ◽  
pp. 2958-2977 ◽  
Author(s):  
Y. A. Miroshnikova ◽  
G. I. Rozenberg ◽  
L. Cassereau ◽  
M. Pickup ◽  
J. K. Mouw ◽  
...  

Tumors are fibrotic and characterized by abundant, remodeled, and cross-linked collagen that stiffens the extracellular matrix stroma. The stiffened collagenous stroma fosters malignant transformation of the tissue by increasing tumor cell tension to promote focal adhesion formation and potentiate growth factor receptor signaling through kinase. Importantly, collagen cross-linking requires fibronectin (FN). Fibrotic tumors contain abundant FN, and tumor cells frequently up-regulate the FN receptor α5β1 integrin. Using transgenic and xenograft models and tunable two- and three-dimensional substrates, we show that FN-bound α5β1 integrin promotes tension-dependent malignant transformation through engagement of the synergy site that enhances integrin adhesion force. We determined that ligation of the synergy site of FN permits tumor cells to engage a zyxin-stabilized, vinculin-linked scaffold that facilitates nucleation of phosphatidylinositol (3,4,5)-triphosphate at the plasma membrane to enhance phosphoinositide 3-kinase (PI3K)-dependent tumor cell invasion. The data explain why rigid collagen fibrils potentiate PI3K activation to promote malignancy and offer a perspective regarding the consistent up-regulation of α5β1 integrin and FN in many tumors and their correlation with cancer aggression.


1997 ◽  
Vol 78 (6) ◽  
pp. 3234-3248 ◽  
Author(s):  
I. M. Purcell ◽  
A. A. Perachio

Purcell, I. M. and A. A. Perachio. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil. J. Neurophysiol. 78: 3234–3248, 1997. Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within ±45° of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation areas of efferent terminal fields display a trend from smallest to largest for the central, peripheral, and planum types, respectively. Neurons that innervate the central zone of the crista do not extend into the peripheral or planum regions. Conversely, those neurons with terminal fields in the peripheral or planum regions do not innervate the central zone of the sensory neuroepithelium. The central zone of the crista is innervated preferentially by efferent neurons with cell bodies located in the ipsilateral group e. The peripheral and planum zones of the crista are innervated preferentially by efferent neurons with cell bodies located in the contralateral group e. A model incorporating our anatomic observations is presented describing an ipsilateral closed-loop feedback between ipsilateral efferent neurons and the periphery and an open-loop feed-forward innervation from contralateral efferent neurons. A possible role for the vestibular efferent neurons in the modulation of semicircular canal afferent response dynamics is proposed.


Author(s):  
Melissa McNeil ◽  
Yingying Han ◽  
Peng Sun ◽  
Kazuhide Watanabe ◽  
Jun Jiang ◽  
...  

AbstractMammary gland is an outstanding system to study the regulatory mechanisms governing adult epithelial stem cell activity. Stem cells in the basal layer of the mammary gland fuel the morphogenesis and regeneration of a complex epithelial network during development and upon transplantation. The self-renewal of basal stem/progenitor cells is subjected to regulation by both cell-intrinsic and extrinsic mechanisms. Nfatc1 is a transcription factor that regulates breast tumorigenesis and metastasis, but its role in mammary epithelial development and stem cell function has not been investigated. Here we show that Nfatc1 is expressed in a small subset of mammary basal epithelial cells and its epithelial-specific deletion results in mild defects in side branching and basal-luminal cell balance. Moreover, Nfatc1-deficient basal cells exhibit reduced colony forming ability in vitro and somewhat compromised regenerative potential upon transplantation. Thus, our study provides evidence for a detectable yet non-essential role of Nfatc1 in mammary epithelial morphogenesis and basal stem/progenitor cell self-renewal.


Sign in / Sign up

Export Citation Format

Share Document