Computation of Design Sensitivities in Steady-State Incompressible Laminar Flows Based on New Semi-Analytical Method

2020 ◽  
Vol 83 (1) ◽  
Author(s):  
Mahdi Hassanzadeh ◽  
Mahmood Mazare
2000 ◽  
Vol 122 (4) ◽  
pp. 437-442
Author(s):  
Shigeru Aoki ◽  
Takeshi Watanabe

This paper deals with steady-state response of the piping system with nonlinear support having hysteresis damping characteristics. Considering the energy loss for contact with a support, an analytical method of approximate solution for the beam, a one-span model of the piping system, with quadrilateral hysteresis loop characteristics is presented. Some numerical results of the approximate solution for the response curves and the mode shapes are shown. [S0094-9930(00)00204-3]


1992 ◽  
Vol 59 (1) ◽  
pp. 182-190 ◽  
Author(s):  
Abhijit Chandra ◽  
Cho Lik Chan

A Boundary Element Method (BEM) formulation for the determination of design sensitivities of temperature distributions to various shape and process parameters in steady-state convection-diffusion problems is presented in this paper. The present formulation is valid for constant or piecewise-constant convective velocities. This approach is based on direct differentiation (DDA) of the relevant BEM formulation of the problem. It retains the advantages of the BEM regarding accuracy and efficiency while avoiding strongly singular kernels. The BEM formulation is also observed to avoid any false diffusion. This approach provides a new avenue toward efficient optimization of steady-state convection-diffusion problems and may be easily adapted to investigate the thermal aspects of various machining processes.


1975 ◽  
Vol 97 (1) ◽  
pp. 61-65 ◽  
Author(s):  
J. C. Chato ◽  
A. Shitzer

A steady-state analytical method has been developed to estimate the amount of heat extracted from a blood vessel running close to the skin surface which is cooled in a symmetrical fashion by a cooling strip. The results indicate that the optimum width of a cooling strip is approximately three times the depth to the centerline of the blood vessel. The heat extracted from a blood vessel similar to the carotid artery by such a strip is about 0.9 w/m-deg C, which is too small to affect significantly the temperature of the blood flow through a main blood vessel, such as the carotid artery.


2008 ◽  
Vol 80 (24) ◽  
pp. 9483-9490 ◽  
Author(s):  
Christian Amatore ◽  
Nicolas Da Mota ◽  
Célia Lemmer ◽  
Cécile Pebay ◽  
Catherine Sella ◽  
...  

1972 ◽  
Vol 14 (3) ◽  
pp. 247-256
Author(s):  
V. F. Baston ◽  
J. H. McFadden ◽  
W. A. Yuill

Author(s):  
Vahid Monfared ◽  
Mehdi Mondali ◽  
Ali Abedian

A new analytical formulation is presented to study the steady-state creep in short fiber composites using complex variable method. In this new approach, both the fiber and matrix creep at low stresses and temperatures. To analyze the crept fiber, a plane stress model was used. Important novelties of the present analytical method are determination of displacement rates with proper boundary conditions in the crept fibers and also using the complex variable method in creep analyzing. It is noteworthy that the method can be useful to study the creep behavior in polymeric matrix composites due to their high capability of creep. Moreover, another significant application of the present method is to study on the creep or elastic behavior of carbon nanotube polymer composites. Finally, the results obtained from the present analytical method (complex variable method) show a good agreement with the existing experimental results.


Sign in / Sign up

Export Citation Format

Share Document