Bio-based PA5.10 for Industrial Applications: Improvement of Barrier and Thermo-mechanical Properties with Rice Husk Ash and Nanoclay

2019 ◽  
Vol 27 (10) ◽  
pp. 2213-2223 ◽  
Author(s):  
Daniele Battegazzore ◽  
Alberto Frache
2015 ◽  
Vol 1119 ◽  
pp. 234-238 ◽  
Author(s):  
Meena Laad ◽  
Vijaykumar S. Jatti ◽  
Satyendra Yadav

The excellent mechanical properties of Aluminium Metal Matrix Composites find applications in a variety of engineering applications in the automotive, aerospace and heavy machinery industries. This study aims at synthesis and characterization of Al 64430 reinforced with SiC particles and Rice Husk Ash (RHA). Rice husk ash is an agricultural waste which is produced in millions of tons worldwide. Aluminium was used as the base metal. With liquid metallurgy technique the metal matrix composites were prepared. The MMCs were synthesized with 3 % weight percentage RHA in Al metal matrix and the mechanical properties such as hardness, tensile strength and structural properties of MMCs were studied. The microstructure of the synthesized composites was examined by optical emission microscope and XRD. The Vicker’s microhardness test was performed on the composite specimens from base of the cast. The synthesized MMCs were found to have increased tensile strength, hardness, increased ultimate strength. The density of MMCs was observed to be decreased. This study indicates that RHA can be used as reinforcement material to synthesize light weight composites with increased hardness, tensile strength, Young’s modulus for various industrial applications.


Author(s):  
Nosa Idusuyi ◽  
Peter Ozaveshe Oviroh ◽  
Adetoye Henry Adekoya

Aluminium based metal matrix composites (MMCs) have received considerable attention in the last decade for its potential industrial applications. One of the challenges encountered using Aluminium based MMCs is understanding the influence of the reinforcement particles on the corrosion resistance and mechanical properties. In this study the corrosion behaviour and mechanical properties of Al6063 reinforced with egg shell ash and rice husk ash were investigated. Waste Egg Shell Ash (ESA) and Rice Husk Ash (RHA) 212 μm in size were used to produce the composites with 10 wt% of reinforcements via stir casting technique. The RHA and ESA were added in the ratios of 10:0, 7.5:2.5, 5:5, 2.5:7.5, 0:10. Unreinforced Al6063 was used as baseline material. Immersion tests, potentiodynamic polarization techniques, tensile tests, optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the composites. The results showed that reinforcing with 7.5 wt% RHA + 2.5 wt% ESA provided the highest resistance to corrosion. Generally, a reduction in the corrosion rates were observed for the reinforced composites as the wt% of RHA increased. Porosity levels of the composites reduced with an increase in the percentage of ESA in the matrix. Microstructural characterization using SEM and OM revealed a distribution of pits on the composite surfaces which was more severe with increasing RHA percentage. The UTS (ultimate tensile stress) results revealed that the composite containing 10 wt% RHA had the maximum value of 161 MPa. The results demonstrate that rice husk ash and eggshell ash can be useful in producing low cost Aluminium composites with improved corrosion resistance and tensile properties.


2015 ◽  
Vol 57 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Ahmad Adlie Shamsuri ◽  
Ahmad Khuzairi Sudari ◽  
Edi Syams Zainudin ◽  
Mazlina Ghazali

Author(s):  
Md. Rahat Hossain ◽  
Md. Hasan Ali ◽  
Md. Al Amin ◽  
Md. Golam Kibria ◽  
Md. Shafiul Ferdous

Aluminium matrix composites (AMCs) used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs) such as aluminium alloy (A356) reinforced with rice husk ash particles (RHA) are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356) reinforced with various amounts of (2%, 4%, and 6%) rice husk ash (RHA) particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA) and aluminium matrix composites (AMCs). In future, the optimum percentages of rice husk ash (RHA) to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM) will be applied for further investigation.


2019 ◽  
Vol 798 ◽  
pp. 364-369 ◽  
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Parjaree Thavorniti

The aim of this work is to study the feasibility of preparation of fly ash based geopolymer using sodium water glass from agricultural waste as alternative activators. Rice husk ash and bagasse ash were used as raw materials for producing sodium water glass solution. The sodium water glass were produced by mixing rice husk ash and bagasse ash with NaOH in ball mill and boiling. The prepared sodium water glass were analyzed and used in geopolymer preparation process. The geopolymer paste were prepared by adding the obtained water glass and NaOH with fly ash. After cured at ambient temperature for 7 days, mechanical properties were investigated. Bonding and phases of the geopolymer were also characterized. The geopolymer from rice husk ash presented highest compressive strength about 23 MPa while the greatest for bagasse ash was about 16 MPa.


Sign in / Sign up

Export Citation Format

Share Document