A Study on the Corrosion and Mechanical Properties of an Al6063 Reinforced With Egg Shell Ash and Rice Husk Ash

Author(s):  
Nosa Idusuyi ◽  
Peter Ozaveshe Oviroh ◽  
Adetoye Henry Adekoya

Aluminium based metal matrix composites (MMCs) have received considerable attention in the last decade for its potential industrial applications. One of the challenges encountered using Aluminium based MMCs is understanding the influence of the reinforcement particles on the corrosion resistance and mechanical properties. In this study the corrosion behaviour and mechanical properties of Al6063 reinforced with egg shell ash and rice husk ash were investigated. Waste Egg Shell Ash (ESA) and Rice Husk Ash (RHA) 212 μm in size were used to produce the composites with 10 wt% of reinforcements via stir casting technique. The RHA and ESA were added in the ratios of 10:0, 7.5:2.5, 5:5, 2.5:7.5, 0:10. Unreinforced Al6063 was used as baseline material. Immersion tests, potentiodynamic polarization techniques, tensile tests, optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the composites. The results showed that reinforcing with 7.5 wt% RHA + 2.5 wt% ESA provided the highest resistance to corrosion. Generally, a reduction in the corrosion rates were observed for the reinforced composites as the wt% of RHA increased. Porosity levels of the composites reduced with an increase in the percentage of ESA in the matrix. Microstructural characterization using SEM and OM revealed a distribution of pits on the composite surfaces which was more severe with increasing RHA percentage. The UTS (ultimate tensile stress) results revealed that the composite containing 10 wt% RHA had the maximum value of 161 MPa. The results demonstrate that rice husk ash and eggshell ash can be useful in producing low cost Aluminium composites with improved corrosion resistance and tensile properties.

2015 ◽  
Vol 1119 ◽  
pp. 234-238 ◽  
Author(s):  
Meena Laad ◽  
Vijaykumar S. Jatti ◽  
Satyendra Yadav

The excellent mechanical properties of Aluminium Metal Matrix Composites find applications in a variety of engineering applications in the automotive, aerospace and heavy machinery industries. This study aims at synthesis and characterization of Al 64430 reinforced with SiC particles and Rice Husk Ash (RHA). Rice husk ash is an agricultural waste which is produced in millions of tons worldwide. Aluminium was used as the base metal. With liquid metallurgy technique the metal matrix composites were prepared. The MMCs were synthesized with 3 % weight percentage RHA in Al metal matrix and the mechanical properties such as hardness, tensile strength and structural properties of MMCs were studied. The microstructure of the synthesized composites was examined by optical emission microscope and XRD. The Vicker’s microhardness test was performed on the composite specimens from base of the cast. The synthesized MMCs were found to have increased tensile strength, hardness, increased ultimate strength. The density of MMCs was observed to be decreased. This study indicates that RHA can be used as reinforcement material to synthesize light weight composites with increased hardness, tensile strength, Young’s modulus for various industrial applications.


2015 ◽  
Vol 57 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Ahmad Adlie Shamsuri ◽  
Ahmad Khuzairi Sudari ◽  
Edi Syams Zainudin ◽  
Mazlina Ghazali

2019 ◽  
Vol 18 (3) ◽  
pp. 331-338
Author(s):  
Jemssy Ronald Rohi ◽  
Priyo Tri Iswanto ◽  
Tjipto Sujitno ◽  
Erich Umbu Kondi

AISI 316L is widely used for implantation in orthopedic surgery due to its good corrosion resistance, mechanical properties and low cost. However, AISI 316L is not well suited for biocompatibility with the body, so implant material with AISI 316L can’t be used for a long time. One way to improve the corrosion resistance and mechanical properties of AISI 316L is to perform a surface treatment such as sputtering. This study discusses the effect of deposition sputtering TiN of 60, 90, 120 and 150 minutes on roughness and surface hardness at a ratio of argon gas and nitrogen to 80% Ar:20% N2. The results of the surface roughness value of the TiN sputtering layer deposited to AISI 316L for 60, 90, 120, and 150 minutes were 0.02 μm, 0.04 μm, 0.06 μm, and 0.04 μm respectively. This shows that the coating time of TiN in AISI 316L has no significant influence on value of surface roughness. Surface hardness results at 60, 90, 120, and 150 minutes were obtained with 268 HVN, 275 HVN, 278 HVN and 282 HVN. Increased hardness value, as the TiN thin layer has a higher hardness value compared to AISI 316L. The longer the deposition time, the more layers are formed and the layer becomes thicker. With the thickness of the layer, the density at the grain boundary increases. Because the higher density leads to grain growth, in which form micropores.


2021 ◽  
Author(s):  
Aliyu Yaro ◽  
Laminu Kuburi ◽  
Musa Abiodun Moshood

Abstract Polymeric materials are used in different industrial applications because they retain good environmental properties, low-cost, and easy to produce compared to conventional materials. This study investigated the effect of adding kaolin micro-filler (KF) on the mechanical properties of Luffa Fiber (LCF) reinforced polyester resin. Luffa cylindrica fiber treated with 5% NaOH, varied in weight fraction (5, 10, and 15%wt) was used to reinforce unsaturated polyester resin using hand lay-up method, whereas for the hybrid composite kaolin filler were kept constant at 6wt% fraction while the fibers varied as in the mono-reinforced composite. The samples were machined for mechanical and microstructural analysis. Analysis of the result revealed that the addition of kaolin has enhanced greatly the mechanical properties of Luffa-fibre based composites. The result reveal of the microstructure analysis, shows that there is an improvement in fiber-matrix adhesion.


Author(s):  
Md. Rahat Hossain ◽  
Md. Hasan Ali ◽  
Md. Al Amin ◽  
Md. Golam Kibria ◽  
Md. Shafiul Ferdous

Aluminium matrix composites (AMCs) used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs) such as aluminium alloy (A356) reinforced with rice husk ash particles (RHA) are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356) reinforced with various amounts of (2%, 4%, and 6%) rice husk ash (RHA) particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA) and aluminium matrix composites (AMCs). In future, the optimum percentages of rice husk ash (RHA) to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM) will be applied for further investigation.


Sign in / Sign up

Export Citation Format

Share Document