Taguchi Optimization Study for Efficient Removal of Phenolic Pollutants from Wastewater Using Cu-Alanine Functionalized Graphene Oxide and Their Grafted Alginate Microbeads: Isotherm Modeling

Author(s):  
Esraa M. El-Fawal ◽  
T. Zaki
2021 ◽  
pp. 61-87
Author(s):  
E. Prabakaran ◽  
Kriveshini Pillay

This article describes the fabrication of electrochemical devices for the detection of a key environmental pollutant, 4-Nitrophenol (4-NPh). 4-NPh is a requirement for the synthesis of organophosphate pesticides. These pesticides are mostly used in the agricultural sector to obtain a high yield of agricultural products. The use of 4-NPh in the agricultural field results in poisonous levels of this compound in the soil and water. Different techniques have been used for its transformation by biological and chemical degradation. However, these strategies not only created highly toxic pollutant but also need fast operation and time consuming processes. In this background, we have reported a broad and efficient review of the electrochemical reduction of 4-NPh as a feasible alternate method. In this review paper, graphene oxide (GO), reduced graphene oxide (rGO), N-doped graphene oxide, functionalized graphene oxide, metallic nanoparticles coated graphene oxide, metal oxides covered on rGO, polymer functionalized graphene oxide and hybrids materials functionalized with graphene oxide (hydroxyl apatite and β-cyclodextrin) which have been fabricated on a glassy carbon electrode (GCE) to enhance the electrocatalytic reduction and increase the sensor activity of 4-NPh are discussed. We have also described the effects of a few interfering phenolic pollutants such as aminophenol, hydroquinone, o-nitrophenol (o-NPh), trinitrotoluene, trinitrophenol, 2, 4-dinitrophenol (4-DNPh) and nitrobenzene. In the paper, easy and more effective electrochemical methods for the detection of 4-NPh with graphene- based nanocomposites modified on GCE for 4-NPh detection are summarized and discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 100636-100642 ◽  
Author(s):  
Wenzhu Yin ◽  
Huaqiang Cao

In this work, SnO2 functionalized graphene oxide was shown to possess high adsorption capacities and fast adsorption rates for organic dyes over wide pH ranges. Additionally, the adsorbent could be easily regenerated by washing with ethanol.


2017 ◽  
Vol 643 (22) ◽  
pp. 1776-1784 ◽  
Author(s):  
Hany Amer ◽  
Wafaa M. Moustafa ◽  
Ahmed A. Farghali ◽  
Waleed M. A. El Rouby ◽  
Waleed F. Khalil

2015 ◽  
Vol 19 (18) ◽  
pp. 1828-1837 ◽  
Author(s):  
George V. Theodosopoulos ◽  
Panayiotis Bilalis ◽  
Georgios Sakellariou

Sign in / Sign up

Export Citation Format

Share Document