Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability

2007 ◽  
Vol 40 (1) ◽  
pp. 519-528 ◽  
Author(s):  
Jule Xiao ◽  
Bin Si ◽  
Dayou Zhai ◽  
Shigeru Itoh ◽  
Zaur Lomtatidze
2020 ◽  
Vol 6 (46) ◽  
pp. eabc2414
Author(s):  
Yichao Wang ◽  
Huayu Lu ◽  
Kexin Wang ◽  
Yao Wang ◽  
Yongxiang Li ◽  
...  

East Asian monsoon variability in the Pliocene warm world has not been sufficiently studied because of the lack of direct records. We present a high-resolution precipitation record from Pliocene fluvial-lacustrine sequences in the Weihe Basin, Central China, a region sensitive to the East Asian monsoon. The record shows an abrupt monsoon shift at ~4.2 million years ago, interpreted as the result of high-latitude cooling, with an extratropical temperature decrease across a critical threshold. The precipitation time series exhibits a pronounced ~100–thousand year periodicity and the presence of precession and half-precession cycles, which suggest low-latitude forcing. The synchronous phase but mismatched amplitudes of the East Asian monsoon precipitation proxy and eccentricity suggest a nonlinear but sensitive precipitation response to temperature forcing in the Pliocene warm world. These observations highlight the role of high- and low-latitude forcing of East Asian monsoon variations on tectonic and orbital time scales.


2006 ◽  
Vol 65 (3) ◽  
pp. 411-420 ◽  
Author(s):  
Wenying Jiang ◽  
Zhengtang Guo ◽  
Xiangjun Sun ◽  
Haibin Wu ◽  
Guoqiang Chu ◽  
...  

AbstractA high-resolution pollen and Pediastrum record, spanning 12,500 yr, is presented for Lake Bayanchagan , southern Inner Mongolia. Individual pollen taxa (PT-MAT) and the PFT affinity scores (PFT-MAT) were used for quantitative climatic reconstruction from pollen and algal data. Both techniques indicate that a cold and dry climate, similar to that of today, prevailed before 10,500 cal yr B.P. The wettest climate occurred between ∼10,500 and 6500 cal yr B.P., at which time annual precipitation was up to 30–60% higher than today. The early Holocene increases in temperature and precipitation occurred simultaneously, but mid-Holocene cooling started at approximately 8000 cal yr B.P., 1500 yr earlier than the drying. Vegetation reconstruction was based on the objective assignment of pollen taxa to the plant functional type. The results suggest that this region was dominated by steppe vegetation throughout the Holocene, except for the period ∼9200 to ∼6700 cal yr B.P., when forest patches were relatively common. Inner Mongolia is situated at the limit of the present East Asian monsoon and patterns of vegetation and climate changes in that region during the Holocene probably reflect fluctuations in the monsoon's response to solar insolation variations. The early to middle Holocene monsoon undoubtedly extended to more northern latitudes than at present.


2019 ◽  
Vol 5 (3) ◽  
pp. 233-244 ◽  
Author(s):  
Jasti S. Chowdary ◽  
Kaiming Hu ◽  
G. Srinivas ◽  
Yu Kosaka ◽  
Lin Wang ◽  
...  

2008 ◽  
Vol 275 (3-4) ◽  
pp. 296-307 ◽  
Author(s):  
Jason Cosford ◽  
Hairuo Qing ◽  
Bruce Eglington ◽  
Dave Mattey ◽  
Daoxiang Yuan ◽  
...  

Radiocarbon ◽  
2018 ◽  
Vol 61 (1) ◽  
pp. 51-65
Author(s):  
Qingmin Chen ◽  
Weijian Zhou ◽  
Zhe Wang ◽  
Feng Xian ◽  
George S Burr

ABSTRACTThe Inner Mongolian Plateau lies along the northern limit reached by the East Asian summer monsoon. This geographic setting makes it especially sensitive to environmental change and an excellent site for understanding Quaternary East Asian monsoon variability. In this study we present new results of hydrogen isotopic compositions of fatty acids extracted from sediments, which were used to construct Holocene paleoprecipitation (or moisture) changes in Northern China. The hydrogen isotopic composition (D/H ratio) of n-acids in the sedimentary sequence of the Duoerji peat, Inner Mongolia, was determined with gas chromatography and mass spectrometry. Changes in the precipitation from middle Inner Mongolia are recorded by the D/H ratio of n-C20, n-C22, n-C24, n-C26, n-C28 acids (δD). From 10–9 ka, the relatively high δD values indicate reduced precipitation in the Early Holocene. Subsequently, increased precipitation is reflected by reduced δD values from 9–5.5 ka. After 5.5 ka, gradually increasing δD values record an overall decrease in precipitation. The precipitation trends established for the Duoerji sequence are consistent with other major paleoclimate proxies in the East Asian monsoon region, especially with a distinct Holocene optimum of increased monsoonal activity from 9–5.5 ka. The δD resulting paleo-precipitation record clearly shows that the Holocene climate in Northern China is basically controlled by the insolation changes.


Sign in / Sign up

Export Citation Format

Share Document