Sedimentology of a topset-dominated, braided river delta of Huangqihai Lake, North China: implications for formation mechanisms

2016 ◽  
Vol 59 (2) ◽  
pp. 245-261 ◽  
Author(s):  
Xin Shan ◽  
Shengli Li ◽  
Shunli Li ◽  
Xinghe Yu ◽  
Li Wan ◽  
...  
2018 ◽  
Author(s):  
Liang Wen ◽  
Likun Xue ◽  
Xinfeng Wang ◽  
Caihong Xu ◽  
Tianshu Chen ◽  
...  

Abstract. Nitrate aerosol composes a significant fraction of fine particles and plays a key role in regional air quality and climate. To obtain a holistic understanding of the nitrate pollution and its formation mechanisms over the North China Plain (NCP) – the most industrialized and polluted region in northern China, intensive field observations were conducted at three sites during summertime in 2014–2015. The measurement sites include the downtown and downwind of Ji'nan, the capital city of Shandong Province, as well as the peak of NCP – Mt. Tai (1534 m a.s.l.), and hence cover representative urban, rural and remote areas of the region. Elevated nitrate concentrations were observed at all three sites despite distinct temporal and spatial variations. The nitrate / PM2.5 and nitrate / sulfate ratios have significantly increased in Ji'nan (2005–2015) and at Mt. Tai (from 2007 to 2014), indicating the worsening situation of regional nitrate pollution. A multi-phase chemical box model (RACM/CAPRAM) was deployed and constrained by observations to elucidate the nitrate formation mechanisms. The principal formation route is the partitioning of gaseous HNO3 to aerosol phase at daytime, whilst the nocturnal nitrate formation is dominated by the heterogeneous hydrolysis of N2O5. The daytime nitrate production in the NCP region is mainly limited by the availability of NO2 and to a lesser extent O3 and NH3, and the nighttime formation is controlled by both NO2 and O3. NH3 prompts significantly the nitrate formation at daytime but plays a slightly negative role in the nighttime. Our analyses suggest that controlling NOx and O3 is an efficient way at the moment to mitigate nitrate pollution in the NCP region, where NH3 is usually in excess in summer. This study provides observational evidence of rising trend of nitrate aerosol as well as scientific support for formulating effective control strategies for regional haze in China.


2021 ◽  
Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Hanbing Xu ◽  
...  

<p>Simultaneous measurements of aerosol hygroscopicity and chemical composition were performed at a suburban site in the North China Plain in winter 2018 using a self-assembled hygroscopic tandem differential mobility analyzer (H-TDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM), respectively. During the experimental period, aerosol particles usually show an external mixture in terms of hygroscopicity, with a less hygroscopic particles mode (LH) and a more hygroscopic mode (MH). The average ensemble mean hygroscopicity parameter (κ<sub>mean</sub>) are 0.16, 0.18, 0.16, and 0.15 for 60, 100, 150, and 200 nm particles, respectively. Two episodes with different RH/T conditions and secondary aerosol formations are distinguished. Higher aerosol hygroscopicity is observed for all measured sizes in the high RH episode (HRH) than in the low RH episode (LRH). In LRH, κ decreases as the particle size increases, which may be explained by the large contribution of non- or less-hygroscopic primary compounds in large particles due to the enhanced domestic heating emissions at low temperature. The number fraction of LH mode at 200 nm even exceeds 50%. Closure analysis is carried out between the HTDMA-measured κ and the ACSM-derived hygroscopicity using different approximations for the hygroscopic parameters of organic compounds (κ<sub>org</sub>). The results indicate that κ<sub>org</sub> is less sensitive towards the variation of its oxidation level under HRH conditions but has a stronger O: C-dependency under LRH conditions. The difference in the chemical composition and their corresponding physical properties under different RH/T conditions reflects potentially different formation mechanisms of secondary organic aerosols at those two distinct episodes.</p>


Sign in / Sign up

Export Citation Format

Share Document