On the difference of aerosol hygroscopicity between high and low RH environment in the North China Plain

Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Hanbing Xu ◽  
...  

<p>Simultaneous measurements of aerosol hygroscopicity and chemical composition were performed at a suburban site in the North China Plain in winter 2018 using a self-assembled hygroscopic tandem differential mobility analyzer (H-TDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM), respectively. During the experimental period, aerosol particles usually show an external mixture in terms of hygroscopicity, with a less hygroscopic particles mode (LH) and a more hygroscopic mode (MH). The average ensemble mean hygroscopicity parameter (κ<sub>mean</sub>) are 0.16, 0.18, 0.16, and 0.15 for 60, 100, 150, and 200 nm particles, respectively. Two episodes with different RH/T conditions and secondary aerosol formations are distinguished. Higher aerosol hygroscopicity is observed for all measured sizes in the high RH episode (HRH) than in the low RH episode (LRH). In LRH, κ decreases as the particle size increases, which may be explained by the large contribution of non- or less-hygroscopic primary compounds in large particles due to the enhanced domestic heating emissions at low temperature. The number fraction of LH mode at 200 nm even exceeds 50%. Closure analysis is carried out between the HTDMA-measured κ and the ACSM-derived hygroscopicity using different approximations for the hygroscopic parameters of organic compounds (κ<sub>org</sub>). The results indicate that κ<sub>org</sub> is less sensitive towards the variation of its oxidation level under HRH conditions but has a stronger O: C-dependency under LRH conditions. The difference in the chemical composition and their corresponding physical properties under different RH/T conditions reflects potentially different formation mechanisms of secondary organic aerosols at those two distinct episodes.</p>

2014 ◽  
Vol 14 (5) ◽  
pp. 2525-2539 ◽  
Author(s):  
H. J. Liu ◽  
C. S. Zhao ◽  
B. Nekat ◽  
N. Ma ◽  
A. Wiedensohler ◽  
...  

Abstract. Hygroscopic growth of aerosol particles is of significant importance in quantifying the aerosol radiative effect in the atmosphere. In this study, hygroscopic properties of ambient particles are investigated based on particle chemical composition at a suburban site in the North China Plain during the HaChi campaign (Haze in China) in summer 2009. The size-segregated aerosol particulate mass concentration as well as the particle components such as inorganic ions, organic carbon and water-soluble organic carbon (WSOC) are identified from aerosol particle samples collected with a ten-stage impactor. An iterative algorithm is developed to evaluate the hygroscopicity parameter κ from the measured chemical composition of particles. During the HaChi summer campaign, almost half of the mass concentration of particles between 150 nm and 1 μm is contributed by inorganic species. Organic matter (OM) is abundant in ultrafine particles, and 77% of the particulate mass with diameter (Dp) of around 30 nm is composed of OM. A large fraction of coarse particle mass is undetermined and is assumed to be insoluble mineral dust and liquid water. The campaign's average size distribution of κ values shows three distinct modes: a less hygroscopic mode (Dp < 150 nm) with κ slightly above 0.2, a highly hygroscopic mode (150 nm < Dp < 1 μm) with κ greater than 0.3 and a nearly hydrophobic mode (Dp > 1 μm) with κ of about 0.1. The peak of the κ curve appears around 450 nm with a maximum value of 0.35. The derived κ values are consistent with results measured with a high humidity tandem differential mobility analyzer within the size range of 50–250 nm. Inorganics are the predominant species contributing to particle hygroscopicity, especially for particles between 150 nm and 1 μm. For example, NH4NO3, H2SO4, NH4HSO4 and (NH4)2SO4 account for nearly 90% of κ for particles of around 900 nm. For ultrafine particles, WSOC plays a critical role in particle hygroscopicity due to the predominant mass fraction of OM in ultrafine particles. WSOC for particles of around 30 nm contribute 52% of κ. Aerosol hygroscopicity is related to synoptic transport patterns. When southerly wind dominates, particles are more hygroscopic; when northerly wind dominates, particles are less hygroscopic. Aerosol hygroscopicity also has a diurnal variation, which can be explained by the diurnal evolution of planetary boundary layer, photochemical aging processes during daytime and enhanced black carbon emission at night. κ is highly correlated with mass fractions of SO42−, NO3− and NH4+ for all sampled particles as well as with the mass fraction of WSOC for particles of less than 100 nm. A parameterization scheme for κ is developed using mass fractions of SO42−, NO3−, NH4+ and WSOC due to their high correlations with κ, and κ calculated from the parameterization agrees well with κ derived from the particle's chemical composition. Further analysis shows that the parameterization scheme is applicable to other aerosol studies in China.


2022 ◽  
Author(s):  
Jingnan Shi ◽  
Juan Hong ◽  
Nan Ma ◽  
Qingwei Luo ◽  
Yao He ◽  
...  

Abstract. Atmospheric processes, including both primary emissions and secondary formation, may exert complex effects on aerosol hygroscopicity, which is of significant importance in understanding and quantifying the effect of aerosols on climate and human health. In order to explore the influence of local emissions and secondary formation processes on aerosol hygroscopicity, we investigated the hygroscopic properties of submicron aerosol particles at a rural site in the North China Plain (NCP) in winter 2018. This was conducted by simultaneous measurements of aerosol hygroscopicity and chemical composition, using a self-assembled hygroscopic tandem differential mobility analyzer (HTDMA) and a capture-vaporizer time-of-flight aerosol chemical speciation monitor (CV-ToF-ACSM). The hygroscopicity results showed that the particles during the entire campaign were mainly externally mixed, with a more hygroscopic (MH) mode and a less hygroscopic (LH) particles mode. The mean hygroscopicity parameter values (κmean) derived from hygroscopicity measurements for particles at 60, 100, 150, and 200 nm were 0.16, 0.18, 0.16, and 0.15, respectively. During this study, we classified two distinct episodes with different RH/T conditions, indicative of different primary emissions and secondary formation processes. It was observed that aerosols at all measured sizes were more hygroscopic under the high RH (HRH) episode than those under the low RH (LRH) episode. During the LRH, κ decreased with increasing particle size, which may be explained by the enhanced domestic heating at low temperature, causing large emissions of non- or less-hygroscopic primary aerosols. This is particularly obvious for 200 nm particles, with a dominant number fraction (> 50 %) of LH mode particles. Using O : C-dependent hygroscopic parameters of secondary organic compounds (κSOA), closure analysis between the HTDMA_measured κ and the ACSM_derived κ was carried out. The results showed that κSOA under the LRH episode was less sensitive to the changes in organic oxidation level, while κSOA under the HRH had a relatively stronger dependency on the organic O : C. This feature suggests that the different sources and aerosol evolution processes, partly resulting from the variation in atmospheric RH/T conditions, may lead to significant changes in aerosol chemical composition, which will further influence their corresponding physical properties.


2018 ◽  
Author(s):  
Liang Wen ◽  
Likun Xue ◽  
Xinfeng Wang ◽  
Caihong Xu ◽  
Tianshu Chen ◽  
...  

Abstract. Nitrate aerosol composes a significant fraction of fine particles and plays a key role in regional air quality and climate. To obtain a holistic understanding of the nitrate pollution and its formation mechanisms over the North China Plain (NCP) – the most industrialized and polluted region in northern China, intensive field observations were conducted at three sites during summertime in 2014–2015. The measurement sites include the downtown and downwind of Ji'nan, the capital city of Shandong Province, as well as the peak of NCP – Mt. Tai (1534 m a.s.l.), and hence cover representative urban, rural and remote areas of the region. Elevated nitrate concentrations were observed at all three sites despite distinct temporal and spatial variations. The nitrate / PM2.5 and nitrate / sulfate ratios have significantly increased in Ji'nan (2005–2015) and at Mt. Tai (from 2007 to 2014), indicating the worsening situation of regional nitrate pollution. A multi-phase chemical box model (RACM/CAPRAM) was deployed and constrained by observations to elucidate the nitrate formation mechanisms. The principal formation route is the partitioning of gaseous HNO3 to aerosol phase at daytime, whilst the nocturnal nitrate formation is dominated by the heterogeneous hydrolysis of N2O5. The daytime nitrate production in the NCP region is mainly limited by the availability of NO2 and to a lesser extent O3 and NH3, and the nighttime formation is controlled by both NO2 and O3. NH3 prompts significantly the nitrate formation at daytime but plays a slightly negative role in the nighttime. Our analyses suggest that controlling NOx and O3 is an efficient way at the moment to mitigate nitrate pollution in the NCP region, where NH3 is usually in excess in summer. This study provides observational evidence of rising trend of nitrate aerosol as well as scientific support for formulating effective control strategies for regional haze in China.


2020 ◽  
Author(s):  
Tao Ma ◽  
Hiroshi Furutani ◽  
Fengkui Duan ◽  
Takashi Kimoto ◽  
Jingkun Jiang ◽  
...  

Abstract. Severe winter hazes accompanied by high concentrations of fine particulate matter (PM2.5) occur frequently in the North China Plain and threaten public health. Organic matter (OM) and sulfate are recognized as major components of PM2.5, while atmospheric models often fail to predict their high concentrations during severe winter hazes due to incomplete understanding of secondary aerosol formation mechanisms. By using a novel combination of single particle mass spectrometer and optimized ion chromatography measurement, here we show that hydroxymethanesulfonate (HMS), formed by the reaction between formaldehyde (HCHO) and dissolved SO2 in aerosol water, is ubiquitous in Beijing winter. The HMS concentration and the molar ratio of HMS to sulfate increased with the deterioration of winter haze. High concentrations of precursors (SO2 and HCHO) coupled with low oxidant levels, low temperature, high relative humidity, and moderately acid pH facilitate the heterogeneous formation of HMS, which could account for up to 15 % of OM in winter haze and lead to 36 % overestimates of sulfate when using traditional ion chromatography measurements. Despite the clean air actions have substantially reduced SO2 emissions, HMS concentration and molar ratio of HMS to sulfate during severe winter hazes increased from 2015 to 2016 with the growth of HCHO concentration. Our findings illustrate the significant contribution of heterogeneous HMS chemistry to severe winter hazes in Beijing, which help to improve the prediction of OM and sulfate, and suggest that the reduction in HCHO can help to mitigate haze pollution.


2018 ◽  
Vol 32 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Xuefei Qi ◽  
Junying Sun ◽  
Lu Zhang ◽  
Xiaojing Shen ◽  
Xiaoye Zhang ◽  
...  

2014 ◽  
Vol 14 (11) ◽  
pp. 16123-16149 ◽  
Author(s):  
G. Q. Fu ◽  
W. Y. Xu ◽  
R. F. Rong ◽  
J. B. Li ◽  
C. S. Zhao

Abstract. Frequent low visibility, haze and fog events were found in the North China Plain (NCP). Data throughout the NCP during the past 30 years were examined to determine the horizontal distribution and decadal trends of low visibility, haze and fog events. The impact of meteorological factors such as wind and RH on those events was investigated. Results reveal distinct distributions of haze and fog days, due to their different formation mechanisms. Low visibility, haze and fog days all display increasing trends of before 1995, a steady stage during 1995–2003 and a drastically drop thereafter. All three events occurred most frequently during the heating season. Benefiting from emission control measures, haze and fog both show decreasing trends in winter during the past 3 decades, while summertime haze displays continuous increasing trends. The distribution of wind speed and wind direction as well as the topography within the NCP has determinative impacts on the distribution of haze and fog. Weakened south-easterly winds in the southern part of the NCP has resulted in high pollutant concentrations and frequent haze events along the foot of the Taihang Mountains. The orographic wind convergence zone in the central band area of the southern NCP is responsible for the frequent fog events in this region. Wind speed has been decreasing throughout the entire southern NCP, resulting in more stable atmospheric conditions and weaker dispersion abilities, calling for harder efforts to control emissions to prevent haze events. Haze events are strongly influenced by the ambient RH. RH values associated with haze days are evidently increasing, suggesting that an increasing fraction of haze events are caused by the hygroscopic growth of aerosols, rather than simply by high aerosol loadings.


Sign in / Sign up

Export Citation Format

Share Document