Role of amphiphilic organic additives in design of silica materials with ordered mesoporous structure

Author(s):  
Nadiia V. Roik ◽  
Marina O. Dziazko ◽  
Iryna M. Trofymchuk ◽  
Olena I. Oranska
Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1152
Author(s):  
Alberto Polo-Montalvo ◽  
Laura Casarrubios ◽  
María Concepción Serrano ◽  
Adrián Sanvicente ◽  
María José Feito ◽  
...  

Due to their specific mesoporous structure and large surface area, mesoporous bioactive glasses (MBGs) possess both drug-delivery ability and effective ionic release to promote bone regeneration by stimulating osteogenesis and angiogenesis. Macrophages secrete mediators that can affect both processes, depending on their phenotype. In this work, the action of ion release from MBG-75S, with a molar composition of 75SiO2-20CaO-5P2O5, on osteogenesis and angiogenesis and the modulatory role of macrophages have been assessed in vitro with MC3T3-E1 pre-osteoblasts and endothelial progenitor cells (EPCs) in monoculture and in coculture with RAW 264.7 macrophages. Ca2+, phosphorous, and silicon ions released from MBG-75S were measured in the culture medium during both differentiation processes. Alkaline phosphatase activity and matrix mineralization were quantified as the key markers of osteogenic differentiation in MC3T3-E1 cells. The expression of CD31, CD34, VEGFR2, eNOS, and vWF was evaluated to characterize the EPC differentiation into mature endothelial cells. Other cellular parameters analyzed included the cell size and complexity, intracellular calcium, and intracellular content of the reactive oxygen species. The results obtained indicate that the ions released by MBG-75S promote osteogenesis and angiogenesis in vitro, evidencing a macrophage inhibitory role in these processes and demonstrating the high potential of MBG-75S for the preparation of implants for bone regeneration.


2021 ◽  
Vol 45 (14) ◽  
pp. 6192-6205
Author(s):  
Haiqing Xu ◽  
Yuhang Gao ◽  
Qiantu Tao ◽  
Aiping Li ◽  
Zhanchao Liu ◽  
...  

The molecularly imprinted polymer prepared on the nanoreactor SBA-15 displayed excellent ordered mesoporous structure and superior adsorption property for salicylic acid.


2015 ◽  
Vol 51 (12) ◽  
pp. 2450-2453 ◽  
Author(s):  
Dae-Soo Yang ◽  
Min Young Song ◽  
Kiran Pal Singh ◽  
Jong-Sung Yu

The exact role of iron in catalyzing oxygen reduction reaction in both alkaline and acidic media is portrayed with unique platelet ordered mesoporous carbon prepared using Fe-phthalocyanine as iron, nitrogen and carbon sources.


Author(s):  
Chen Hou ◽  
Dongyan Zhao ◽  
Wenqiang Chen ◽  
Hao Li ◽  
Sufeng Zhang ◽  
...  

In this work, magnetic CuFe2O4/Ag nanoparticles activated by porous covalent organic frameworks (COF) was fabricated to evaluate the heterogenous reduction of 4-nitrophenol (4-NP). The core-shell CuFe2O4/Ag@COF was successfully prepared by polydopamine reduction of silver ions on CuFe2O4 nanoparticles, followed by COF layer condensation. With integrating the intrinsic characteristics of the magnetic CuFe2O4/Ag core and COF layer, the obtained nanocomposite exhibited features of high specific surface area (464.21 m2 g-1), ordered mesoporous structure, strong environment stability, as well as fast magnetic response. Accordingly, the CuFe2O4/Ag@COF catalyst showed good affinity towards 4-NP via π-π stacking interactions and possessed enhanced catalytic activity compared with CuFe2O4/Ag and CuFe2O4@COF. The pseudo-first-order rate constant of CuFe2O4/Ag@COF (0.77 min-1) is 3 and 5 times higher than CuFe2O4/Ag and CuFe2O4@COF, respectively. The characteristics of bi-catalytic CuFe2O4/Ag and the porous COF shell of CuFe2O4/Ag@COF made a contribution to improve the activity of 4-NP reduction. The present work demonstrated a facile strategy to fabricate COF activated nano-catalysts with enhanced performance in the fields of nitrophenolic wastewater treatment.


2016 ◽  
Vol 221 ◽  
pp. 159-166 ◽  
Author(s):  
Hailong Li ◽  
Junjiang Zhu ◽  
Ping Xiao ◽  
Yingying Zhan ◽  
Kangle Lv ◽  
...  

2021 ◽  
Author(s):  
Hamed Pourzolfaghar ◽  
Soraya Hosseini ◽  
Marziyeh Alinejad

Addition of the organic additives to the electrolyte is one of the state-of-the-art and cost-effective solutions to develop an appropriate rechargeable ZABs able to be promoted towards commercial application. In this mini review, some of the most important organic additives have been reviewed and their functions in the zinc air batteries have been investigated.


Sign in / Sign up

Export Citation Format

Share Document