X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles

2013 ◽  
Vol 27 (2) ◽  
pp. 547-553 ◽  
Author(s):  
D. V. Kurmude ◽  
R. S. Barkule ◽  
A. V. Raut ◽  
D. R. Shengule ◽  
K. M. Jadhav
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. G. Blanco-Esqueda ◽  
G. Ortega-Zarzosa ◽  
J. R. Martínez ◽  
A. L. Guerrero

Magnetic composites with silver nanoparticles bonded to their surface were successfully prepared using a simple chemical method. By means of a sol-gel technique, nickel ferrite nanoparticles have been prepared and coated with silica to control and avoid their magnetic agglomeration. The structural and magnetic properties of the nanoparticles were studied in function of the annealing temperature. Then, silver nanoparticles were incorporated by hydrolysis-condensation of tetraethyl orthosilicate, which contains silver nitrate on the surface of the nickel ferrite-SiO2core/shell. Samples were characterized using X-ray diffraction, IR spectroscopy, SEM, and magnetometry. Results show that the silica covered the nickel ferrite nanoparticles and the silver nanoparticles remain stable in the surface of the composite.


2021 ◽  
Vol 8 ◽  
Author(s):  
T. Gaudisson ◽  
S. Nowak ◽  
Z. Nehme ◽  
N. Menguy ◽  
N. Yaacoub ◽  
...  

We report the effect of a polyol-mediated annealing on nickel ferrite nanoparticles. By combining X-ray fluorescence spectroscopy, X-ray diffraction, and 57Fe Mössbauer spectrometry, we showed that whereas the as-prepared nanoparticles (NFO) are stoichiometric, the annealed ones (a-NFO) are not, since Ni0-based crystals precipitate. Nickel depletion from the spinel lattice and reduction in the polyol solvent are accompanied with an important cation migration. Indeed, thanks to Mössbauer hyperfine structure analysis, we evidenced that the cation distribution in NFO departs from the thermodynamically stable inverse spinel structure with a concentration of tetrahedrally coordinated Ni2+ of 20 wt-% (A sites). After annealing, and nickel demixing, originated very probably from the A sites of NFO lattice, the spinel phase accommodates with cation and anion vacancies, leading to the (Fe3+0.84□0.16)A[Ni2+0.80Fe3+1.16□0.04]BO4-0.20 formula, meaning that the applied polyol-mediated treatment is not so trivial.


RSC Advances ◽  
2017 ◽  
Vol 7 (36) ◽  
pp. 22320-22328 ◽  
Author(s):  
Hossein Nikmanesh ◽  
Parviz Kameli ◽  
Seyed Morteza Asgarian ◽  
Shiva Karimi ◽  
Mahmood Moradi ◽  
...  

A series of Zn and Co-substituted nickel ferrite nanoparticles of nominal composition Ni1−xZnxFe2−xCoxO4 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) have been synthesized by the PVA assisted sol–gel method.


2012 ◽  
Vol 727-728 ◽  
pp. 884-887
Author(s):  
Paulo Sergio da Silva Porto ◽  
José Rafael C. Proveti ◽  
E.P. Muniz ◽  
R.D. Pereira ◽  
D.R. Araujo

Various methods have been reported to obtain nanosized ferrite particles such as chemical coprecipitation, sol-gel, spray-drying, microwave plasma, sonochemical, hydrothermal synthesis, reverse micelle technique and mechano synthesis. In this work Nickel Ferrite nanoparticles are produced using coconut water or pectin extracted from apple peel (using sulfuric or chloridric acid) as precursor for the proteic sol-gel (PSG) method. The samples are prepared by drying and subsequent isothermal treatment of the sol gel at 873 or 1173 K during 2 hours. The resultant materials were analyzed by Fourier Transform Infrared Spectroscopy (FTIRS) and discussed with emphasis in the purity of the samples produced.


2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 477-482
Author(s):  
W. Nowicki ◽  
J. Darul ◽  
P. Piszora ◽  
C. Baehtz ◽  
E. Wolska

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waheed Ali Khoso ◽  
Noor Haleem ◽  
Muhammad Anwar Baig ◽  
Yousuf Jamal

AbstractThe heavy metals, such as Cr(VI), Pb(II) and Cd(II), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is important to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, magnetic Nickel-Ferrite Nanoparticles (NFNs) were synthesized by co-precipitation method and characterized using X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Field Emission Scanning Electronic Microscopy (FE-SEM) techniques in order to confirm the crystalline structure, composition and morphology of the NFN’s, these were then used as adsorbent for the removal of Cr(VI), Pb(II) and Cd(II) from wastewater. The adsorption parameters under study were pH, dose and contact time. The values for optimum removal through batch-adsorption were investigated at different parameters (pH 3–7, dose: 10, 20, 30, 40 and 50 mg and contact time: 30, 60, 90, and 120 min). Removal efficiencies of Cr(VI), Pb(II) and Cd(II) were obtained 89%, 79% and 87% respectively under optimal conditions. It was found that the kinetics followed the pseudo second order model for the removal of heavy metals using Nickel ferrite nanoparticles.


Optik ◽  
2017 ◽  
Vol 137 ◽  
pp. 244-253 ◽  
Author(s):  
P. Annie Vinosha ◽  
Belina Xavier ◽  
A. Ashwini ◽  
L. Ansel Mely ◽  
S. Jerome Das

2006 ◽  
Vol 20 (26) ◽  
pp. 1645-1651
Author(s):  
JIAFU CHEN ◽  
YU YE ◽  
QIANWANG CHEN

A novel hexagonal network structure formed by self-assembly of discrete nickel ferrite nanoparticles on a carbon-coated Cu grid is reported. Each hexagon consists of about 22 discrete nanoparticles with sizes from 120 to 250 nm. The side of the regular hexagon contains 4–6 discrete nanoparticles. The sample displays a large coercivity of 622.6 Oe, exhibiting a hard magnetic feature different from those of the corresponding bulk materials, and is closely related to the hexagonal network structure of nickel ferrite nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document