scholarly journals Approximate and robust bounded job start scheduling for Royal Mail delivery offices

Author(s):  
Dimitrios Letsios ◽  
Jeremy T. Bradley ◽  
Suraj G ◽  
Ruth Misener ◽  
Natasha Page

AbstractMotivated by mail delivery scheduling problems arising in Royal Mail, we study a generalization of the fundamental makespan scheduling $$P||C_{\max }$$ P | | C max problem which we call the bounded job start scheduling problem. Given a set of jobs, each specified by an integer processing time $$p_j$$ p j , that have to be executed non-preemptively by a set of m parallel identical machines, the objective is to compute a minimum makespan schedule subject to an upper bound $$g\le m$$ g ≤ m on the number of jobs that may simultaneously begin per unit of time. With perfect input knowledge, we show that Longest Processing Time First (LPT) algorithm is tightly 2-approximate. After proving that the problem is strongly $${\mathcal {N}}{\mathcal {P}}$$ N P -hard even when $$g=1$$ g = 1 , we elaborate on improving the 2-approximation ratio for this case. We distinguish the classes of long and short instances satisfying $$p_j\ge m$$ p j ≥ m and $$p_j<m$$ p j < m , respectively, for each job j. We show that LPT is 5/3-approximate for the former and optimal for the latter. Then, we explore the idea of scheduling long jobs in parallel with short jobs to obtain tightly satisfied packing and bounded job start constraints. For a broad family of instances excluding degenerate instances with many very long jobs, we derive a 1.985-approximation ratio. For general instances, we require machine augmentation to obtain better than 2-approximate schedules. In the presence of uncertain job processing times, we exploit machine augmentation and lexicographic optimization, which is useful for $$P||C_{\max }$$ P | | C max under uncertainty, to propose a two-stage robust optimization approach for bounded job start scheduling under uncertainty aiming in a low number of used machines. Given a collection of schedules of makespan $$\le D$$ ≤ D , this approach allows distinguishing which are the more robust. We substantiate both the heuristics and our recovery approach numerically using Royal Mail data. We show that for the Royal Mail application, machine augmentation, i.e., short-term van rental, is especially relevant.

2014 ◽  
Vol 668-669 ◽  
pp. 1641-1645
Author(s):  
Xiao Xia He ◽  
Chun Yao ◽  
Qiu Hua Tang

The scheduling of the single machine is of major importance in applications. The focus of this work is to analyze the scheduling problems in single-machine scheduling in the presence of uncertain parameters. By assuming that the processing time is represented by the nominal value plus a perturbation, we propose a robust model base on event point, and we obtain the feasible job sequence with some probability confidence level.


Author(s):  
Bartłomiej Przybylski

AbstractWe consider a number of parallel-machine scheduling problems in which jobs have variable processing times. The actual processing time of each job is described by an arbitrary positive function of the position it holds on a machine. However, the function itself may additionally depend on the job or a machine this job was assigned to. Our aim is to find a schedule that minimizes the objectives of maximum completion time or the total completion time. We present a full set of polynomial solutions for the cases of jobs with no precedence constraints. We also show that the case of single-chained jobs may be not easier in general, but some polynomial results can be obtained, too.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhanguo Zhu ◽  
Jinlin Li ◽  
Chengbin Chu

Multitasking scheduling problems with a deterioration effect incurred by coexisting behavioral phenomena in human-related scheduling systems including deteriorating task processing times and deteriorating rate-modifying activity (DRMA) of human operators are addressed. Under the assumption of this problem, the processing of a selected task suffers from the joint effect of available but unfinished waiting tasks, the position-dependent deterioration of task processing time, and the DRMA of human operators. Traditionally, these issues have been considered separately; herein, we address their integration. We propose optimal algorithms to solve the problems to minimize makespan and the total absolute differences in completion time, respectively. Based on the analysis, some special cases and extensions are also discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xianyu Yu ◽  
Yulin Zhang ◽  
Kai Huang

This paper investigates the scheduling problems with general deterioration models. By the deterioration models, the actual processing time functions of jobs depend not only on the scheduled position in the job sequence but also on the total weighted normal processing times of the jobs already processed. In this paper, the objective is to minimize the makespan. For the single-machine scheduling problems with general deterioration effects, we show that the considered problems are polynomially solvable. For the flow shop scheduling problems with general deterioration effects, we also show that the problems can be optimally solved in polynomial time under the proposed conditions.


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 337
Author(s):  
Mathias Kühn ◽  
Michael Völker ◽  
Thorsten Schmidt

Project Planning and Control (PPC) problems with stochastic job processing times belong to the problem class of Stochastic Resource-Constrained Multi-Project Scheduling Problems (SRCMPSP). A practical example of this problem class is the industrial domain of customer-specific assembly of complex products. PPC approaches have to compensate stochastic influences and achieve high objective fulfillment. This paper presents an efficient simulation-based optimization approach to generate Combined Priority Rules (CPRs) for determining the next job in short-term production control. The objective is to minimize project-specific objectives such as average and standard deviation of project delay or makespan. For this, we generate project-specific CPRs and evaluate the results with the Pareto dominance concept. However, generating CPRs considering stochastic influences is computationally intensive. To tackle this problem, we developed a 2-phase algorithm by first learning the algorithm with deterministic data and by generating promising starting solutions for the more computationally intensive stochastic phase. Since a good deterministic solution does not always lead to a good stochastic solution, we introduced the parameter Initial Copy Rate (ICR) to generate an initial population of copied and randomized individuals. Evaluating this approach, we conducted various computer-based experiments. Compared to Standard Priority Rules (SPRs) used in practice, the approach shows a higher objective fulfilment. The 2-phase algorithm can reduce the computation effort and increases the efficiency of generating CPRs.


2009 ◽  
Vol 01 (02) ◽  
pp. 219-226
Author(s):  
MING LIU ◽  
YINFENG XU ◽  
CHENGBIN CHU ◽  
LU WANG

We consider two semi-online scheduling problems on a single batch (processing) machine with jobs' nondecreasing processing times and jobs' nonincreasing processing times, respectively. Our objective is to minimize the makespan. A batch processing machine can handle up to B jobs simultaneously. We study an unbounded model where B = ∞. The jobs that are processed together construct a batch, and all jobs in a batch start and complete at the same time. The processing time of a batch is given by the longest processing time of any job in the batch. Jobs arrive over time. Let pj denote the processing time of job Jj. Given job Jj and its following job Jj + 1, we assume that pj + 1 ≥ α pj, where α ≥ 1 is a constant number, for the first problem with jobs' nondecreasing processing times. For the second problem, we assume that pj + 1 ≤ α pj, where 0 < α < 1 is a constant number. We propose an optimal algorithm for both problems with a competitive ratio [Formula: see text] for the first problem and [Formula: see text] for the second problem.


Author(s):  
James C. Long

Over the years, many techniques and products have been developed to reduce the amount of time spent in a darkroom processing electron microscopy negatives and micrographs. One of the latest tools, effective in this effort, is the Mohr/Pro-8 film and rc paper processor.At the time of writing, a unit has been recently installed in the photographic facilities of the Electron Microscopy Center at Texas A&M University. It is being evaluated for use with TEM sheet film, SEM sheet film, 35mm roll film (B&W), and rc paper.Originally designed for use in the phototypesetting industry, this processor has only recently been introduced to the field of electron microscopy.The unit is a tabletop model, approximately 1.5 × 1.5 × 2.0 ft, and uses a roller transport method of processing. It has an adjustable processing time of 2 to 6.5 minutes, dry-to-dry. The installed unit has an extended processing switch, enabling processing times of 8 to 14 minutes to be selected.


Sign in / Sign up

Export Citation Format

Share Document