Excess Molar Volumes, Viscosity Deviations and Isentropic Compressibility of Binary Mixtures Containing 1,3-Dioxolane and Monoalcohols at 303.15 K

2005 ◽  
Vol 34 (11) ◽  
pp. 1311-1325 ◽  
Author(s):  
Mahendra Nath Roy ◽  
Anuradha Sinha ◽  
Biswajit Sinha
Author(s):  
E. Zorebski ◽  
M. Zorebski ◽  
J. Nurek

Densities, speeds of ultrasound, ultrasonic absorption coefficients (in the frequency range 10–80 MHz) and kinematic viscosities have been measured for 1-butanol + 1,3-butanediol mixtures at the temperature 298.15 K. Using these results, the molar volumes, isentropic compressibility coefficients, molar isentropic compressibilities, volume viscosities, and the corresponding excess and deviation values (excess molar volumes, excess isentropic compressibility coefficients, excess molar isentropic compressibilities, two different defined deviations speed of ultrasound, and dynamic viscosity deviations) were calculated. The excess and deviation values are expressed by Redlich-Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding. The predictive abilities of Grunberg-Nissan and McAllister equations for viscosities of mixtures are also examined.


2016 ◽  
Author(s):  
◽  
Mbalenhle B. Nduli

The thermophysical properties of the binary mixtures containing biofuel components derived from biomass were determined. Experimental densities, speed of sound, and refractive indices for the binary mixtures (methanol or 1-ethyl-3-methylimidazolium acetate [EMIM][OAc] + furfural or furfuryl alcohol ) were measured at T = (298.15, 303.15, 308.15, 313.15 and 318.15) K. From the experimental data, excess molar volume, E m V , isentropic compressibility, s  , molar refractions, R, and deviation in refractive index, Δn, were calculated. The excess molar volumes were found to be negative for all systems studied. The isentropic compressibility were found to be both positive for the whole composition and temperature range and increases slightly with increasing temperature. The deviation in refractive index was positive over the whole composition range. The obtained values of excess molar volumes and changes of refractive index on mixing were satisfactorily correlated by the Redlich–Kister equation. The Lorentz–Lorenz equation was applied to predict the density and calculate the excess molar volume of the binary mixtures.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Harmandeep Singh Gill ◽  
V. K. Rattan

This research article reports the experimental results of the density, viscosity, refractive index, and speed of sound analysis of binary mixtures of dimethylsulfoxide (DMSO) + 1-phenylethanone (acetophenone) and + 1,4-dimethylbenzene (para-xylene) over the whole composition range at 313.15, 318.15, 323.15, and 328.15 K and at atmospheric pressure. The excess molar volumes (VE), viscosity deviations (Δη), excess Gibbs energy of activation (GE), deviations in isentropic compressibility (KSE), deviations in speed of sound (uE), and deviations in the molar refraction (ΔR) were calculated from the experimental data. The computed quantities were fitted to the Redlich-Kister equation to derive the coefficients and estimate the standard error values. The viscosities have also been correlated with two, and three-parameter models, that is, Heric correlation, McAllister model, and Grunberg-Nissan correlation, respectively.


2014 ◽  
Vol 79 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Andjela Knezevic-Stevanovic ◽  
Jelena Smiljanic ◽  
Slobodan Serbanovic ◽  
Ivona Radovic ◽  
Mirjana Kijevcanin

Densities, refractive indices and viscosities of the binary mixtures of dimethyl phthalate (or dimethyl adipate) + tetrahydrofuran have been measured at eight temperatures (288.15 to 323.15 K) and atmospheric pressure. All measurements were performed using an Anton Paar DMA 5000 digital vibrating-tube densimeter, Anton Paar RXA 156 refractometer and Anton Paar SVM 3000/G2 digital Stabinger viscometer, respectively. From the experimental densities, refractive indices and viscosities, the excess molar volumes, VE, deviations of refractive indices, DnD, and viscosity deviations, Dh, were calculated.


2009 ◽  
Author(s):  
◽  
Precious N. Sibiya

The thermodynamic properties of binary liquid mixtures involving ionic liquids (ILs) with alcohols were determined. ILs are an important class of solvents since they are being investigated as environmentally benign solvents, because of their negligible vapour pressure, and as potential replacement solvents for volatile organic compounds (VOCs) currently used in industries. Alcohols were chosen for this study because they have hydrogen bonding and their interaction with ILs will help in understanding the intermolecular interactions. Also, their thermodynamic properties are used for the development of specific chemical processes. The excess molar volumes of binary mixtures of {1-ethyl-3-methylimidazolium ethylsulfate + methanol or 1-propanol or 2-propanol}, {trioctylmethylammonium bis (trifluoromethyl-sulfonyl) imide + methanol or ethanol or 1-propanol}, {1-buty-3-methylimidazolium methylsulfate + methanol or ethanol or 1-propanol} were calculated from experimental density values, at T = (298.15, 303.15 and 313.15) K. The Redlich-Kister smoothing polynomial was fitted to the excess molar volume data. The partial molar volumes of the binary mixtures {1-ethyl-3-methylimidazolium ethylsulfate + methanol or 1-propanol or 2-propanol}, {trioctylmethylammonium bis (trifluoromethyl-sulfonyl) imide + methanol or ethanol or 1-propanol}, {1-buty-3-methylimidazolium methylsulfate + methanol or ethanol or 1-propanol} were calculated from the Redlich-Kister coefficients, at T = (298.15, 303.15 and 313.15) K. This information was used to better understand the intermolecular interactions with each solvent at infinite dilution. iii The isentropic compressibility of {trioctylmethylammonium bis (trifluoromethyl-sulfonyl) imide + methanol or ethanol or 1-propanol}, were calculated from the speed of sound data at T = 298.15 K.


Sign in / Sign up

Export Citation Format

Share Document