viscosity deviations
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 12 (2) ◽  
pp. 616-620
Author(s):  
Anderson U. Ezeibe ◽  
Emmanuel C. Nleonu ◽  
Kelechi G. Ubaka ◽  
Nadia Arrousse ◽  
Brandy O. Nleonu

Density and viscosity of binary liquid mixtures of household kerosene (HHK) and premium motor spirit (PMS) were determined over the entire range of mole fraction at 303K. Excess molar volume (VE), molar volume (Vm), Excess Viscosity (ηE), Viscosity deviations (Δη) and excess Gibbs free energies of activation of viscous flow (ΔGE) were calculated. The results obtained shows that excess free energy of activation were all positive over the entire mole fraction. The viscosity deviation shows both negative and positive values. The positive VE obtained in this study shows increase in volume in the binary mixture. This work will help in effective monitoring, detection of adulterated kerosene and subsequent enforcement of severe penalty on such adulteration.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5513
Author(s):  
Reza Haghbakhsh ◽  
Ana Rita C. Duarte ◽  
Sona Raeissi

In this study, the viscosity behavior of two mixtures of Ethaline (1 ChCl:2 ethylene glycol) with either methanol or ethanol were investigated over the temperature range of 283.15–333.15 K at atmospheric pressure. The measured viscosities of neat Ethaline, methanol, and ethanol showed reliable agreement with the corresponding reported literature values. The mixture viscosities were modeled by an Arrhenius-like model to determine the behavior of viscosity with respect to temperature. The data were also modeled by the four well-known mixture viscosity models of Grunberg–Nissan, Jouyban–Acree, McAllister, and Preferential Solvation. All of the model results were reliable, with the Jouyban–Acree and Preferential Solvation models showing the most accurate agreement with the experimental measurements. The Jones–Dole viscosity model was also investigated for the measured viscosities, and by analyzing the results of this model, strong interactions among Ethaline and the alcohol molecules were proposed for both systems. As a final analysis, viscosity deviations of the investigated systems were calculated to study the deviations of the viscosity behaviors with respect to ideal behavior. Both systems showed negative viscosity deviations at all of the investigated temperatures, with the negative values tending towards zero, and hence more ideal behavior, with increasing temperatures. Moreover, in order to correlate the calculated viscosity deviations, the Redlich–Kister model was successfully used for both systems and at each investigated temperature.


2020 ◽  
Vol 74 (3) ◽  
pp. 163-185
Author(s):  
Divna Majstorovic ◽  
Marija Mirkovic ◽  
Mirjana Kijevcanin ◽  
Emila Zivkovic

The aim of this research is the experimental determination of density, viscosity, refractive index and speed of sound for binary mixtures of the ester ethyl acetate and alcohols. Experimental measurements were carried out for two systems with 1-propanol and 1-butanol at atmospheric pressure and in a temperature range 288.15 - 323.15 K. Results of experimental measurements were further used to determine excess molar volumes, viscosity deviations, refractive index deviations, and excess isentropic compressibility for each investigated mixture. These calculated data were correlated using the empirical Redlich-Kister equation. Positive values of the excess molar volume and isentropic compressibility appear for both analysed systems, while values of viscosity and refractive index deviations are negative. The structure and specific characteristics of different molecules in considered mixtures and determined non-ideal behaviour allow the insight into the possible type of interactions in the mixture, interstitial accommodation and structural effects.


2019 ◽  
Vol 31 (4) ◽  
pp. 820-824
Author(s):  
Husam S. Khalaf ◽  
Zainab A.H. Al-Dulaimy ◽  
Ahmed M. Abbas ◽  
Maida H. Saleem

At the temperature 298.15 K, some physical properties such as: refractive indices (nD), viscosities (η) and densities (ρ) were studied in four liquid-liquid mixtures: carboxylic acids (HCOOH, CH3COOH, CH3CH2COOH and CH3CH2CH2COOH) with tetrahydrofurfuryl alcohol (THFA) with the identified configuration set. These empirical data were utilized to estimate the excess molar volumes (Vm E), refractive index perversions (ΔR), viscosity deviations (ηE) and excess molar Gibbs free energy (ΔG*E). Values of Vm E, ηE , ΔG*E and ΔR were plotted versus mole fraction of tetrahydrofurfuryl alcohol. In all cases, the values of Vm E, ηE , ΔG*E and ΔR that obtained in this study were found to be negative at 298.15 K. The excess parameters were applied in the Redlich-Kister equation by utilizing multi-parameter coefficients that concluded binary coefficients and in respect to the standard deviation. The difference of these characteristics with the formation of binary liquid systems indicates the absence of bipolar bond, variation in the shape and size of component molecules, hydrogen bonding and dipolar interaction among unlike molecules.


2018 ◽  
Vol 34 (4) ◽  
pp. 2074-2082 ◽  
Author(s):  
Zainab A. H. Al-Dulaimy ◽  
Dhafir T. A. Al-Heetimi ◽  
Husam Saleem Khalaf ◽  
Ahmed Mohammed Abbas

Refractive indices (nD), viscosities (η) and densities (ρ) were deliberated for the binary mixtures created by dipropyl amine with 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol and tert-pentyl alcohol at temperature 298.15 K over the perfect installation extent. The function of Redlich-Kister were used to calculate and renovated of the refractive index deviations (∆nD), viscosity deviations (ηE), excess molar Gibbs free energy (∆G*E) and excess molar volumes (VmE) The standard errors and coefficients were respected by this function. The values of ∆nD, ηE, VmE and ∆G*E were plotted against mole fraction of dipropyl amine. In all cases the obtained ηE, ∆G*E, VmE and ∆nD values were negative at 298.15K. Effect of carbon atoms number in the chain of alcohol and hydroxyl groups' position on molecular interactions in these mixtures has also been discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Harmandeep Singh Gill ◽  
V. K. Rattan

This research article reports the experimental results of the density, viscosity, refractive index, and speed of sound analysis of binary mixtures of dimethylsulfoxide (DMSO) + 1-phenylethanone (acetophenone) and + 1,4-dimethylbenzene (para-xylene) over the whole composition range at 313.15, 318.15, 323.15, and 328.15 K and at atmospheric pressure. The excess molar volumes (VE), viscosity deviations (Δη), excess Gibbs energy of activation (GE), deviations in isentropic compressibility (KSE), deviations in speed of sound (uE), and deviations in the molar refraction (ΔR) were calculated from the experimental data. The computed quantities were fitted to the Redlich-Kister equation to derive the coefficients and estimate the standard error values. The viscosities have also been correlated with two, and three-parameter models, that is, Heric correlation, McAllister model, and Grunberg-Nissan correlation, respectively.


2014 ◽  
Vol 20 (3) ◽  
pp. 441-455 ◽  
Author(s):  
Emila Zivkovic ◽  
Mirjana Kijevcanin ◽  
Ivona Radovic ◽  
Slobodan Serbanovic

Viscosities and refractive indices of three binary systems, acetone+1-propanol, acetone+1,2-propanediol and acetone+1,3-propanediol, were measured at eight temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15)K and at atmospheric pressure. From these data viscosity deviations and deviations in refractive index were calculated and fitted to the Redlich-Kister equation. The viscosity modelling was done by two types of models: predictive UNIFAC-VISCO and ASOG VISCO and correlative Teja-Rice and McAlister equations. The refractive indices of binary mixtures were predicted by various mixing rules and compared with experimental data.


2014 ◽  
Vol 79 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Andjela Knezevic-Stevanovic ◽  
Jelena Smiljanic ◽  
Slobodan Serbanovic ◽  
Ivona Radovic ◽  
Mirjana Kijevcanin

Densities, refractive indices and viscosities of the binary mixtures of dimethyl phthalate (or dimethyl adipate) + tetrahydrofuran have been measured at eight temperatures (288.15 to 323.15 K) and atmospheric pressure. All measurements were performed using an Anton Paar DMA 5000 digital vibrating-tube densimeter, Anton Paar RXA 156 refractometer and Anton Paar SVM 3000/G2 digital Stabinger viscometer, respectively. From the experimental densities, refractive indices and viscosities, the excess molar volumes, VE, deviations of refractive indices, DnD, and viscosity deviations, Dh, were calculated.


Sign in / Sign up

Export Citation Format

Share Document