Metrically Regular Vector Field and Iterative Processes for Generalized Equations in Hadamard Manifolds

2017 ◽  
Vol 175 (3) ◽  
pp. 624-651
Author(s):  
Orizon P. Ferreira ◽  
Célia Jean-Alexis ◽  
Alain Piétrus
2019 ◽  
Vol 9 (2) ◽  
pp. 357-366 ◽  
Author(s):  
Mohammad Dilshad

Abstract We consider a Yosida inclusion problem in the setting of Hadamard manifolds. We study Korpelevich-type algorithm for computing the approximate solution of Yosida inclusion problem. The resolvent and Yosida approximation operator of a monotone vector field and their properties are used to prove that the sequence generated by the proposed algorithm converges to the solution of Yosida inclusion problem. An application to our problem and algorithm is presented to solve variational inequalities in Hadamard manifolds.


2020 ◽  
Vol 26 ◽  
pp. 63 ◽  
Author(s):  
E.E.A. Batista ◽  
G.C. Bento ◽  
O.P. Ferreira

This paper presents an extragradient method for variational inequality associated with a point-to-set vector field in Hadamard manifolds, and a study of its convergence properties. To present our method, the concept of ϵ-enlargement of maximal monotone vector fields is used, and its lower-semicontinuity is established to obtain the method convergence in this new context.


Author(s):  
O. M. Korchazhkina

The article presents a methodological approach to studying iterative processes in the school course of geometry, by the example of constructing a Koch snowflake fractal curve and calculating a few characteristics of it. The interactive creative environment 1C:MathKit is chosen to visualize the method discussed. By performing repetitive constructions and algebraic calculations using ICT tools, students acquire a steady skill of work with geometric objects of various levels of complexity, comprehend the possibilities of mathematical interpretation of iterative processes in practice, and learn how to understand the dialectical unity between finite and infinite parameters of flat geometric figures. When students are getting familiar with such contradictory concepts and categories, that replenishes their experience of worldview comprehension of the subject areas they study through the concept of “big ideas”. The latter allows them to take a fresh look at the processes in the world around. The article is a matter of interest to schoolteachers of computer science and mathematics, as well as university scholars who teach the course “Concepts of modern natural sciences”.


Author(s):  
I. I. Kravchenko

The paper considers the mathematical model development technique to build a vector field of the shape deviations when machining flat surfaces of shell parts on multi-operational machines under conditions of anisotropic rigidity in technological system (TS). The technological system has an anisotropic rigidity, as its elastic strains do not obey the accepted concepts, i.e. the rigidity towards the coordinate axes of the machine is the same, and they occur only towards the external force. The record shows that the diagrams of elastic strains of machine units are substantially different from the circumference. The issues to ensure the specified accuracy require that there should be mathematical models describing kinematic models and physical processes of mechanical machining under conditions of the specific TS. There are such models for external and internal surfaces of rotation [2,3], which are successfully implemented in practice. Flat surfaces (FS) of shell parts (SP) are both assembly and processing datum surfaces. Therefore, on them special stipulations are made regarding deviations of shape and mutual arrangement. The axes of the main bearing holes are coordinated with respect to them. The joints that ensure leak tightness and distributed load on the product part are closed on these surfaces. The paper deals with the analytical construction of the vector field F, which describes with appropriate approximation the real surface obtained as a result of modeling the process of machining flat surfaces (MFS) through face milling under conditions of anisotropic properties.


2019 ◽  
Vol 2019 (2) ◽  
pp. 62-67
Author(s):  
R.A. Ilyasova

2017 ◽  
Vol 5 (2) ◽  
pp. 73-78
Author(s):  
Jay Prakash Singh ◽  

In this paper author present an investigation of some differential geometric properties of Para-Sasakian manifolds. Condition for a vector field to be Killing vector field in Para-Sasakian manifold is obtained. Mathematics Subject Classification (2010). 53B20, 53C15.


2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.


Sign in / Sign up

Export Citation Format

Share Document