The compatible and mechanical properties of biodegradable poly(Lactic Acid)/ethylene glycidyl methacrylate copolymer blends

2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Jen-taut Yeh ◽  
Chi-hui Tsou ◽  
Ya-ming Li ◽  
Han-wen Xiao ◽  
Chin-san Wu ◽  
...  
2017 ◽  
Vol 737 ◽  
pp. 269-274
Author(s):  
Sirirat Wacharawichanant ◽  
Chaninthon Ounyai ◽  
Ployvaree Rassamee

The effects of four types of organoclay on morphology and mechanical properties of poly(lactic acid) (PLA)/propylene-ethylene copolymer (PEC) blends were investigated. The ratio of PLA and PEC was 80/20 by weight and the organoclay content was 5 phr. The morphology analysis showed that the addition of all oganocaly types could improve the miscibility of PLA and PEC blends due to the decreased of the domain sizes of PEC dispersed phase in the polymer matrix. The tensile properties showed Young’s modulus of the PLA/PEC blends was improved after adding clay treated surface with 25-30 wt% trimethyl stearyl ammonium.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


2011 ◽  
Vol 96 (4) ◽  
pp. 553-560 ◽  
Author(s):  
Jae Bok Lee ◽  
Yun Kyun Lee ◽  
Gi Dae Choi ◽  
Sang Wook Na ◽  
Tae Sung Park ◽  
...  

2016 ◽  
Vol 709 ◽  
pp. 27-31
Author(s):  
Thanh Chi Nguyen ◽  
Ruksakulpiwat Chaiwat ◽  
Yupaporn Ruksakulpiwat

Glycidyl methacrylate (GMA) was grafted onto poly (lactic acid) (PLA) by internal mixer using dicumyl peroxide (DCP) as an initiator. The results from proton nuclear magnetic resonance (1H-NMR) and gel permeation chromatograph (GPC) indicated that the grafting reaction of GMA onto PLA took place successfully. In order to obtain the optimal GMA content used to graft onto PLA chain, the GMA content was varied into 5, 10 and 15 wt% of PLA. GMA content of 10 wt% was found to give the highest elongation at break of glycidyl methacrylate grafted poly (lactic acid) (PLA-g-GMA). The weight-average molecular weights, the number-average molecular weights and polydispersity index of PLA increased after grafting with GMA. After grafting, the brittle fracture behaviour of PLA was changed to ductile fracture behaviour of PLA-g-GMA. With its superior mechanical properties compared to those of pure PLA, PLA-g-GMA can be considered to be used as a new generation of biodegradable polymer, which can be applied in many industrial applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (41) ◽  
pp. 32350-32357 ◽  
Author(s):  
Weijun Yang ◽  
Franco Dominici ◽  
Elena Fortunati ◽  
José M. Kenny ◽  
Debora Puglia

This article reports the preparation, by means of a masterbatch procedure, of poly (lactic acid) (PLA)/cellulose nanocrystal (CNC) films via premixing 1% wt of CNC into PLA or glycidyl methacrylate (GMA) grafted PLA (g-PLA).


Sign in / Sign up

Export Citation Format

Share Document