Adsorption of uranium(VI) by grapefruit peel in a fixed-bed column: experiments and prediction of breakthrough curves

2012 ◽  
Vol 295 (1) ◽  
pp. 717-727 ◽  
Author(s):  
Weihua Zou ◽  
Lei Zhao ◽  
Lu Zhu
Desalination ◽  
2009 ◽  
Vol 245 (1-3) ◽  
pp. 284-297 ◽  
Author(s):  
Runping Han ◽  
Yu Wang ◽  
Xin Zhao ◽  
Yuanfeng Wang ◽  
Fuling Xie ◽  
...  

2007 ◽  
Vol 20-21 ◽  
pp. 623-626
Author(s):  
Lenka Svecova ◽  
Martin Kubal ◽  
Eric Guibal

Granulated Tolypocladium biomass (industrial waste) was tested as mercury biosorbent in continuous mode (fixed bed column). Supplied material contained approx. 70% of fungal biomass and 30% of inert material (diatomaceous earth). Prior to column experiments, batch sorption was also performed. The results of batch experiments were compared to our previous results obtained for powdered biomass (100% biomass material) and an important drop of sorption capacity was observed. For column experiments, the bed height and flow rate were kept constant and the influence of both initial mercury concentration and bead size was investigated. The Adams Bohart, the Thomas and the Yoon and Nelson models were used for the characterization of breakthrough curves.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shazia Perveen ◽  
Raziya Nadeem ◽  
Shaukat Ali ◽  
Yasir Jamil

Abstract Biochar caged zirconium ferrite (BC-ZrFe2O5) nanocomposites were fabricated and their adsorption capacity for Reactive Blue 19 (RB19) dye was evaluated in a fixed-bed column and batch sorption mode. The adsorption of dye onto BC-ZrFe2O5 NCs followed pseudo-second-order kinetics (R 2 = 0.998) and among isotherms, the experimental data was best fitted to Sips model as compared to Freundlich and Langmuir isotherms models. The influence of flow-rate (3–5 mL min−1), inlet RB19 dye concentration (20–100 mg L−1) and quantity of BC-ZrFe2O5 NCs (0.5–1.5 g) on fixed-bed sorption was elucidated by Box-Behnken experimental design. The saturation times (C t /C o  = 0.95) and breakthrough (C t /C o  = 0.05) were higher at lower flow-rates and higher dose of BC-ZrFe2O5 NCs. The saturation times decreased, but breakthrough was increased with the initial RB19 dye concentration. The treated volume was higher at low sorbent dose and influent concentration. Fractional bed utilization (FBU) increased with RB19 dye concentration and flow rates at low dose of BC-ZrFe2O5 NCs. Yan model was fitted best to breakthrough curves data as compared to Bohart-Adams and Thomas models. Results revealed that BC-ZrFe2O5 nanocomposite has promising adsorption efficiency and could be used for the adsorption of dyes from textile effluents.


2012 ◽  
Vol 518-523 ◽  
pp. 3115-3119
Author(s):  
Yan Qiang Li ◽  
Xiao Feng Ren ◽  
Shao Hua Chen ◽  
Xiu Rong Zhao ◽  
Run Ping Han

The effect of bed depth on adsorption ability of natural zeolite to removal methylene blue (MB) from aqueous solution in the fixed-bed column was studied. The results showed that the increase in column height favored the MB removal form solution. The equilibrium uptake of MB onto unit mass zeolite increased with the bed depth growth. The experimental data were fitted to Yan model using linear and nonlinear regression analysis, respectively. The experimental points and the predicted curves using the Yan model were compared and the error analysis was performed. The results indicated that Yan model were good to predict the breakthrough curves and both two methods can be used to obtain the parameters of Yan model and to predict the breakthrough curves.


2021 ◽  
Vol 891 ◽  
pp. 31-36
Author(s):  
Jirah Emmanuel T. Nolasco ◽  
Camille Margaret S. Alvarillo ◽  
Joshua L. Chua ◽  
Ysabel Marie C. Gonzales ◽  
Jem Valerie D. Perez

Continuous fixed-bed column studies were performed using nanocomposite beads made up of chitosan, polyethyleneimine, and graphene oxide as adsorbents for the removal of methyl orange (MO) in water. The effects of different operating parameters such as initial MO concentration (5, 10, and 15 ppm), bed height (10, 17.5, and 25 cm), and flow rate (27, 43, and 58 mL/min) were investigated using an upward-flow fixed-bed column set-up. The breakthrough curves generated were fitted with Adams-Bohart, Thomas, Yoon-Nelson, and Yan et al. models. The results showed that Yan et al. model agreed best with the breakthrough curves having an R2 as high as 0.9917. Lastly, design parameters for a large-scale adsorption column were determined via scale-up approach using the parameters obtained from column runs.


Sign in / Sign up

Export Citation Format

Share Document