Adsorption of Methylene Blue from Solution by Natural Zeolite in Fixed-Bed Column: Effect of Bed Depth

2012 ◽  
Vol 518-523 ◽  
pp. 3115-3119
Author(s):  
Yan Qiang Li ◽  
Xiao Feng Ren ◽  
Shao Hua Chen ◽  
Xiu Rong Zhao ◽  
Run Ping Han

The effect of bed depth on adsorption ability of natural zeolite to removal methylene blue (MB) from aqueous solution in the fixed-bed column was studied. The results showed that the increase in column height favored the MB removal form solution. The equilibrium uptake of MB onto unit mass zeolite increased with the bed depth growth. The experimental data were fitted to Yan model using linear and nonlinear regression analysis, respectively. The experimental points and the predicted curves using the Yan model were compared and the error analysis was performed. The results indicated that Yan model were good to predict the breakthrough curves and both two methods can be used to obtain the parameters of Yan model and to predict the breakthrough curves.

2019 ◽  
Vol 19 (2) ◽  
pp. 486 ◽  
Author(s):  
Nguyen Thi Thuong ◽  
Nguyen Thi Tuyet Nhi ◽  
Vo Thi Cam Nhung ◽  
Hoang Ngoc Bich ◽  
Bui Thi Phuong Quynh ◽  
...  

A number of harmful effects on the ecosystem, the life of humankind, and living species caused by dye-contaminated wastewater have urged the development for an efficient and cost-efficient treatment method for colored effluents. The cellulose-based adsorbents have been considered as a facile and efficient approach to remove hazardous pollutants because of the abundance of inexpensive agricultural wastes in Viet Nam. This study aims to investigate the elimination of methylene blue (MB) and crystal violet (VL) from wastewater using a fixed-bed column of pre-treated durian peel. Examined variables in the process are bed depths (2–6 cm), flow rate (5–20 mL/min), and influent dye concentrations (200–600 mg/L). The highest adsorption amount of pre-treated DP was 235.80 mg/g and 527.64 mg/g, respectively, on a 600 mg/L of methylene blue and crystal violet achieved within a bed height of 4 cm and a flow rate of 10 mL/min. Accordingly, the breakthrough curves were constructed and modeled using the relevant theoretical models under the effects of different experimental conditions. Pre-treated durian peel was found to exhibit high adsorption capacity for cationic dye in an initial concentration of 200–600 mg/L with complete removal being obtained.


Desalination ◽  
2009 ◽  
Vol 245 (1-3) ◽  
pp. 284-297 ◽  
Author(s):  
Runping Han ◽  
Yu Wang ◽  
Xin Zhao ◽  
Yuanfeng Wang ◽  
Fuling Xie ◽  
...  

2015 ◽  
Vol 5 (4) ◽  
pp. 542-549 ◽  
Author(s):  
Waid S. Omar

The potential of natural zeolite as a low-cost adsorbent was investigated for the removal of zinc from aqueous solution using a continuous fixed bed column. The zeolite tested was taken from the same source (Jabal Uniza in south Jordan) and subjected to crushing and sieving only, without any treatment. The two samples tested are UNZ1 (0.42–0.841 mm) and UNZ2 (0.21–0.42 mm). The Thomas model analysis of the measured breakthrough curves revealed that the adsorbent UNZ2 has a higher value of adsorption capacity to zinc ions (50.75 mg/g) than UNZ1 (33.68 mg/g). The time to 50% breakthrough was determined by the Yoon and Nelson model. It has been found that the time needed to reach 50% breakthrough is 2,006 minutes and 3,171 minutes for UNZ1 and UNZ2, respectively. This indicated that UNZ2 provides better performance with larger service time. Both UNZ1 and UNZ2 agreed to a high degree with the Thomas and Yoon and Nelson models.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shazia Perveen ◽  
Raziya Nadeem ◽  
Shaukat Ali ◽  
Yasir Jamil

Abstract Biochar caged zirconium ferrite (BC-ZrFe2O5) nanocomposites were fabricated and their adsorption capacity for Reactive Blue 19 (RB19) dye was evaluated in a fixed-bed column and batch sorption mode. The adsorption of dye onto BC-ZrFe2O5 NCs followed pseudo-second-order kinetics (R 2 = 0.998) and among isotherms, the experimental data was best fitted to Sips model as compared to Freundlich and Langmuir isotherms models. The influence of flow-rate (3–5 mL min−1), inlet RB19 dye concentration (20–100 mg L−1) and quantity of BC-ZrFe2O5 NCs (0.5–1.5 g) on fixed-bed sorption was elucidated by Box-Behnken experimental design. The saturation times (C t /C o  = 0.95) and breakthrough (C t /C o  = 0.05) were higher at lower flow-rates and higher dose of BC-ZrFe2O5 NCs. The saturation times decreased, but breakthrough was increased with the initial RB19 dye concentration. The treated volume was higher at low sorbent dose and influent concentration. Fractional bed utilization (FBU) increased with RB19 dye concentration and flow rates at low dose of BC-ZrFe2O5 NCs. Yan model was fitted best to breakthrough curves data as compared to Bohart-Adams and Thomas models. Results revealed that BC-ZrFe2O5 nanocomposite has promising adsorption efficiency and could be used for the adsorption of dyes from textile effluents.


2021 ◽  
Vol 891 ◽  
pp. 31-36
Author(s):  
Jirah Emmanuel T. Nolasco ◽  
Camille Margaret S. Alvarillo ◽  
Joshua L. Chua ◽  
Ysabel Marie C. Gonzales ◽  
Jem Valerie D. Perez

Continuous fixed-bed column studies were performed using nanocomposite beads made up of chitosan, polyethyleneimine, and graphene oxide as adsorbents for the removal of methyl orange (MO) in water. The effects of different operating parameters such as initial MO concentration (5, 10, and 15 ppm), bed height (10, 17.5, and 25 cm), and flow rate (27, 43, and 58 mL/min) were investigated using an upward-flow fixed-bed column set-up. The breakthrough curves generated were fitted with Adams-Bohart, Thomas, Yoon-Nelson, and Yan et al. models. The results showed that Yan et al. model agreed best with the breakthrough curves having an R2 as high as 0.9917. Lastly, design parameters for a large-scale adsorption column were determined via scale-up approach using the parameters obtained from column runs.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2011 ◽  
Vol 64 (3) ◽  
pp. 654-660 ◽  
Author(s):  
Xiuli Han ◽  
Wei Wang ◽  
Xiaojian Ma

The adsorption potential of lotus leaf to remove methylene blue (MB) from aqueous solution was investigated in batch and fixed-bed column experiments. Langmuir, Freundlich, Temkin and Koble–Corrigan isotherm models were employed to discuss the adsorption behavior. The results of analysis indicated that the equilibrium data were perfectly represented by Temkin isotherm and the Langmuir saturation adsorption capacity of lotus leaf was found to be 239.6 mg g−1 at 303 K. In fixed-bed column experiments, the effects of flow rate, influent concentration and bed height on the breakthrough characteristics of adsorption were discussed. The Thomas and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The two models were found to be suitable to describe the dynamic behavior of MB adsorbed onto the lotus leaf powder column.


Sign in / Sign up

Export Citation Format

Share Document