The production of 172Tm by triple neutron capture in nuclear reactors

2013 ◽  
Vol 298 (3) ◽  
pp. 1973-1976 ◽  
Author(s):  
M. C. Alí Santoro ◽  
M. C. Fornaciari Iljadica ◽  
I. M. Cohen
2010 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Dini Harsanti

Boron karbida merupakan material yang sulit terbentuk yang memiliki struktur dan aplikasi elektronik yang menarik. Beberapa kelebihan yang dimiliki oleh boron karbida antara lain stabil pada temperatur tinggi, memiliki tingkat kekerasan yang tinggi, berkemampuan tinggi dalam menyerap neutron pada pusat reaktor nuklir, dan memiliki sifat-sifat termoelektrik yang sangat baik. Kombinasi dari sifat-sifat tersebut memungkinkan boron karbida digunakan dalam berbagai aplikasi, termasuk material yang tahan abrasi, persenjataan militer, moderator neutron pada reaktor nuklir, dan berpotensial diaplikasikan pada pembangkit daya penerbangan angkasa luar. Penelitian ini berhasil mensintesis boron karbida dengan fasa B4C yang memiliki sistem Kristal rhombohedral, space grup m 3 R , dan parameter kisi a = b = 5,600, c = 12,08, α = β = γ = 900 dengan menggunakan bahan-bahan awal berupa asam borat (H3BO3), karbonaktif, dan asam sitrat (C6H8O7) yang ditambahkan dengan magnesium sebagai koreduktor.Boron carbide is highly refractory material that is of great interest for both it’s structuraland electronic properties. Of particular importance are it’s high-temperature stability,high hardness, high cross-section for neutron capture, and excellent high-temperaturethermoelectric properties. This combination of properties gives rise to numerous applications, including uses as an abrasive wear-resistant material, ceramic armor, a neutron moderator in nuclear reactors, and potentially, for power generating deep space flight applications. This experimental succesfull to synthesis B4C boron carbide that has rhombohedral crystal system, space grup m 3 R , and lattice constant a = b = 5,600, c = 12,08, α = β = γ = 900 by using raw materials i.e. boric acid (H3BO3), activated carbon, and citric acid (C6H8O7) and magnesium as co-reductant.


1968 ◽  
Vol 21 (7) ◽  
pp. 506-506 ◽  
Author(s):  
A. W. Sunyar ◽  
G. Scharff-Goldhaber ◽  
M. McKeown

2018 ◽  
Vol 3 (3) ◽  
pp. 473
Author(s):  
Bahdanovich R. B ◽  
Pázmán K. ◽  
Tikhomirov G. V.

Calculating the energy release in fuel elements is an important aspect of the modeling and design of nuclear reactors. Most of the energy is produced by fission, but a non-negligible percentage is coming from neutron capture reactions, such as (n, γ) or (n, α). We implement a previously developed method for the calculation of effective energy release using Serpent Monte Carlo code. We investigate the percentage of capture component in effective energy release for various models of VVER-1000 fuel: firstly, an equivalent cell, then fresh fuel assemblies of different compositions, differing in fuel enrichment and the presence of burnable absorbers. The results are compared to similar calculations previously done in MCNP 4 and MCU 5.


1968 ◽  
Vol 21 (4) ◽  
pp. 237-240 ◽  
Author(s):  
A. W. Sunyar ◽  
G. Scharff-Goldhaber ◽  
M. McKeown

Sign in / Sign up

Export Citation Format

Share Document