Synthesis and characterization of room temperature sol–gel-assisted transparent tin-doped magnesium oxide nanoparticles’ protective coating

2016 ◽  
Vol 81 (2) ◽  
pp. 623-631 ◽  
Author(s):  
Shumaila Islam ◽  
Noriah Bidin ◽  
M. Alam Saeed ◽  
Saira Riaz ◽  
M. Aizat A. Bakar ◽  
...  
2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Jegadeeswari A ◽  
Nivetha S

Magnesium oxide was hygroscopic solid mineral that occurs naturally as periclase.Magnesium oxide had high thermal conductivity; it gets heated when the electricity was passed through it. Magnesia crucible had a stability of 2400°C in air, 1700°C in reducing atmosphere. Magnesium oxide nanoparticles were obtained from the mixture of magnesium nitrate as precursor and sodium hydroxide as precipitating agent by sol-gel method. Finally,the resultant white crystalline powder of MgO was annealed at various temperatures of 80°C, 135°C and 180°C. The analytical studies (XRD, SEM FTIR, EDAX) reveals the morphological characterization of MgO nanoparticles. The Scanning Electron Microscopy (SEM) indicates the structures of MgO nanoparticles. The crystal size of MgO nanoparticles was obtained by X-Ray Diffraction (XRD). The optical properties of the sample were obtained by UV- Visible spectroscopy. Fourier Transform infrared spectroscopy indicates powdered composition of the sample. EDAX indicates elementary composition of the MgO nanoparticles.


2020 ◽  
Author(s):  
Infantiya Stephen Grace ◽  
J. Vinola ◽  
Shubramaniyan Deepapriya ◽  
David Rodney John ◽  
A. Aslinjensipriya ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 123-126
Author(s):  
Debasish Aich ◽  
Pijus Kanti Samanta ◽  
Satyajit Saha ◽  
Tapanendu Kamilya

Background: Iron oxide (γ-Fe2O3) nanoparticles have been prepared by a simplified coprecipitation method. Methods: X-ray diffraction peaks of the prepared nanoparticles match well with the characteristic peaks of crystalline g-Fe2O3 as per JCPDS data (JCPDS Card No. 39-1346) and absorption peak at 369 nm along with band gap 2.10 eV suggesting the formation of (γ-Fe2O3) nanoparticles. Results: The γ-Fe2O3 nanoparticles are spherical in nature with a diameter around ~10 nm. Conclusion: The crystalline g-Fe2O3 nanoparticles exhibit excellent super-paramagnetic behavior not only at room temperature (300K) but also at a temperature as low as 100K.


Author(s):  
Rizwan Wahab ◽  
S.G. Ansari ◽  
M.A. Dar ◽  
Young Soon Kim ◽  
Hyung Shik Shin

Sign in / Sign up

Export Citation Format

Share Document