Synthesis and Characterization of Super Paramagnetic Iron Oxide Nanoparticles

2020 ◽  
Vol 10 (2) ◽  
pp. 123-126
Author(s):  
Debasish Aich ◽  
Pijus Kanti Samanta ◽  
Satyajit Saha ◽  
Tapanendu Kamilya

Background: Iron oxide (γ-Fe2O3) nanoparticles have been prepared by a simplified coprecipitation method. Methods: X-ray diffraction peaks of the prepared nanoparticles match well with the characteristic peaks of crystalline g-Fe2O3 as per JCPDS data (JCPDS Card No. 39-1346) and absorption peak at 369 nm along with band gap 2.10 eV suggesting the formation of (γ-Fe2O3) nanoparticles. Results: The γ-Fe2O3 nanoparticles are spherical in nature with a diameter around ~10 nm. Conclusion: The crystalline g-Fe2O3 nanoparticles exhibit excellent super-paramagnetic behavior not only at room temperature (300K) but also at a temperature as low as 100K.

2009 ◽  
Vol 152-153 ◽  
pp. 205-208 ◽  
Author(s):  
H. Arabi ◽  
S. Nateghi ◽  
S. Sadeghi

Iron oxide nanoparticles were synthesis by reverse micelle method. X-ray diffraction technique and vibration sample magnetometer were applied to characterize the produced samples at different conditions and parameters for synthesis route. There is no significant difference between samples prepared at 5°C and room temperature except a better crystalline at room temperature. The molar ratio of water to surfactant (w parameter) and concentration of the salt solution on size and magnetic properties of nanoparticles have been investigated. Increasing w leads to producing particles with larger size i.e. for w=16.83, 11.22, and 5.6, particles size are 15.22, 11.66 and 10.5 nm, respectively. The size of nanoparticles are in the range of 9 to 20 nanometers


2014 ◽  
Vol 602-603 ◽  
pp. 19-22 ◽  
Author(s):  
Lin Qiang Gao ◽  
Hai Yan Chen ◽  
Zhen Wang ◽  
Xin Zou

Nanoscale LiTaO3 powders with perovskite structure were synthesized using the solvothermal technique with glycol as solvent at 240°C for 12h. The powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). XRD was used to elucidate room temperature structures using Rietveld refinement. The powders were pure single pervoskite phase with high crystallinity. FESEM and TEM were used to determine particle size and morphology. The average LiTaO3 grain size was estimated to be < 200nm, and TEM images indicated that LiTaO3 particles had a brick-like morphology. In addition, the effect of the temperature on the LiTaO3 power characterisitics was also detailed studied.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Diana Kostyukova ◽  
Yong Hee Chung

Iron oxide nanoparticles were synthesized by precipitation in isobutanol with sodium hydroxide and ammonium hydroxide. The isobutanol played a role of a surfactant in the synthesis. The nanoparticles were calcined for 100 min to 5 hours in the range of 300 to 600°C. The characterization of the samples by FTIR (Fourier-transform infrared) and XRD (X-ray diffraction) confirmed the formation ofγ-Fe2O3(maghemite) from Fe3O4(magnetite) at calcination at 300°C. The morphology and particle size were studied by SEM (scanning electron microscope). Nanoparticles in the range of 11–22 nm prepared at 0.09 M of ferrous chloride exhibited superparamagnetic properties. Nanoparticles synthesized with ferrous chloride and ammonium hydroxide at 75°C and calcined at 530°C for 2 h wereα-Fe2O3(hematite).


2011 ◽  
Vol 66 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Stephanie C. Neumair ◽  
Johanna S. Knyrim ◽  
Oliver Oeckler ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The cubic iron hydroxy boracite Fe3B7O13OH・1.5H2O was synthesized from Fe2O3 and B2O3 under high-pressure/high-temperature conditions of 3 GPa and 960 °C in a modified Walker-type multianvil apparatus. The crystal structure was determined at room temperature by X-ray diffraction on single crystals. It crystallizes in the cubic space group F4̄3c (Z = 8) with the parameters a = 1222.4(2) pm, V = 1.826(4) nm3, R1 = 0.0362, and wR2 = 0.0726 (all data). The B-O network is similar to that of other cubic boracites.


2009 ◽  
Vol 67 ◽  
pp. 227-232 ◽  
Author(s):  
Gurpreet Singh ◽  
Amrish Panwar ◽  
Anjan Sil ◽  
Sudipto Ghosh

Nanocrystalline LiMn2O4 powder was synthesized by sol-gel method using citric acid as a chelating agent. The powders were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Differential scanning calorimetry (DSC), Differential thermal analysis (DTA), Impedance spectroscopy (IS) and Electrochemical measurements. The powder particles having slight agglomeration characteristics were found to have prismatic morphology and a wider size distribution from 50 nm to 200 nm, which provides good packing density of the material. The electrical conductivity of the powder at room temperature is in the order of ~10-5 S/cm. The structural stability of LiMn2O4 cubic spinel over the temperature range of battery operation was assessed. Electrochemical performance of the material shows a discharge capacity of ~130 mAh/gm.


2016 ◽  
Vol 881 ◽  
pp. 123-127 ◽  
Author(s):  
A.C.B. de Oliveira ◽  
D.M.S. Ribeiro ◽  
C.G.P. Moraes ◽  
R.S. Silva ◽  
Nilson Santos Ferreira ◽  
...  

This work presents the synthesis and characterization of NTC ceramic (Negative coefficient Temperature) based on nickel manganite (NiMn2O4) produced by the polymeric precursor method. NiMn2O4 were sintered at 900-1200 °C during 3h to produce the ceramics samples. The effect of sintering temperature on microstructure and electric properties of the NiMn2O4 ceramics was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and temperature dependent resistance R(T) measurements. The XRD measurement indicated formation of cubic spinel-type structure of NiMn2O4. The crystallite size (as confirmed by XRD) and the particle size (as confirmed by SEM) increased as the sintering temperature increased from around 18nm (900 °C) to 100nm (1200 °C). All samples showed NTC behavior and, among the studied ceramics, that one sintered at 1200 °C showed lower resistivity value (~103Ω.cm) at room temperature.


2016 ◽  
Vol 869 ◽  
pp. 884-889
Author(s):  
Nadia Sueli Vieira Capanema ◽  
Alexandra A.P. Mansur ◽  
Herman Sander Mansur

The need for obtaining new materials to replace human body parts that were destroyed or damaged led scientists from different areas of research for developing new biomaterials. Thus, the aim of this work was the synthesis and characterization of niobium-modified apatite bioceramics. Calcium phosphates (CaP) were synthesized with niobium partially replacing calcium sites using aqueous precipitation route at room temperature. The bioceramics, with and without Nb incorporation, were characterized by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) as prepared and after heat treatments The results indicated that Nb was incorporated in the apatite structure promoting morphological and structural changes in the ceramic properties.


2021 ◽  
Vol 37 (1) ◽  
pp. 177-180
Author(s):  
Alimuddin Alimuddin ◽  
Mohd Rafeeq

Synthesis of strontium oxide nanoparticles was carried out by sol –gel method using strontium nitrate and sodium hydroxide at room temperature which is very simple and cost effective. The characterization of strontium oxide nanoparticles was done using X-ray diffraction, scanning electron microscopy (SEM) and Fourier transform infra-red (FTIR). X-ray diffraction pattern indicates that the nanoparticles are crystalline in nature. The crystalline size of strontium oxide nanoparticle was calculated by Debye-Scherrer formula. The crystalline sizes are about 80nm. The morphology of nanoparticles was observed and investigated using SEM. The material at room temperature, calcined at 2000C, 400 0C and 6000C respectively shows pseudo spherical shape, cubic form and finally it becomes cylindrical this shows that there is a agglomeration with increase in temperature. FTIR spectrum of strontium oxide shows the peak at 854.64 cm-1 which is due to Sr -O bond.


2014 ◽  
Vol 979 ◽  
pp. 232-235 ◽  
Author(s):  
C. Wichasilp ◽  
S. Introng ◽  
W. Maithong ◽  
N. Kruea-In ◽  
C. Kruea-In

In this research, the effects of ZnO nanoparticles additive on crystallization behavior, dielectric and ferroelectric properties of Bi0.5(Na0.81,K0.19)0.5TiO3 ceramics were investigated. The samples were synthesized by solid state reaction technique, where powders were calcined at 850 °C for 4 h and ceramics were sintered at 1100-1150 °C for 4 h. Phase formation was determined by X-ray diffraction technique (XRD). The X-ray diffraction analysis of the ceramics suggests that all samples exhibited a perovskite structure. The dielectric properties under room temperature and various temperatures were also determined. Dielectric measurement data showed that the additive influenced dielectric constant and dielectric loss. Furthermore, the hysteresis loop behaviors slightly changed with increasing the nanoparticles contents.


Sign in / Sign up

Export Citation Format

Share Document