scholarly journals Preparation and characterisation of photocatalytic pigments for architectural mortar based on ultramarine blue

2019 ◽  
Vol 93 (3) ◽  
pp. 714-721 ◽  
Author(s):  
Estíbaliz Aranzabe ◽  
Miren Blanco ◽  
Amaia M. Goitandia ◽  
Karmele Vidal ◽  
María Casado ◽  
...  

Abstract Architectural mortar is used in the building sector when aesthetic surface value is required and therefore, these surfaces present a great potential to be used as a solution for the reduction of atmospheric pollution. In the present work, an inorganic ultramarine blue pigment has been modified to provide the mortars with colour and photocatalytic properties, simultaneously. To modify the pigment, a sol–gel coating based on titanium n-butoxide precursor has been applied on its surface. The influence of different parameters affecting the coating formation, such as the pH and titanium weight content of the sol–gel reactants, has been studied. Moreover, the formation of a coating on the pigment’s surface with several amounts of TiO2 anatase nanoparticles has also been explored. A pigment with better photocatalytic properties has been obtained at pH = 12 applying a coating based on titanium n-butoxide precursors (Ti precursor/pigment weight ratio = 0.5) with 2 wt.% of titania anatase nanoparticles, maintaining the original pigment colour. Moreover, mortars with the new pigment present higher flexural strength and similar compressive strengths than non-modified mortars ensuring the applicability of the pigment in the building sector.

2020 ◽  
Vol 10 (01n02) ◽  
pp. 2060018
Author(s):  
E. M. Bayan ◽  
T. G. Lupeiko ◽  
L. E. Pustovaya ◽  
M. G. Volkova

Sn-doped TiO2 nanomaterials were synthesized by sol–gel method. It was shown the phase compositions and phase transitions change with the introduction of different tin amounts (0.5–20[Formula: see text]mol.%). X-ray powder diffraction was used to study the effect of different tin amounts on the anatase–rutile phase transition. It was found that the introduction of ions increases the thermal stability of anatase modifications. The material’s photocatalytic activity was studied in reaction with a model pollutant (methylene blue) photodegradation under UV and visible light activation. The best photocatalytic properties were shown for material, which contains 5[Formula: see text]mol.% of Sn.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1263
Author(s):  
Elvira Mahu ◽  
Cristina Giorgiana Coromelci ◽  
Doina Lutic ◽  
Iuliean Vasile Asaftei ◽  
Liviu Sacarescu ◽  
...  

A mesoporous titania structure has been prepared using the ultrasound-assisted sol-gel technique in order to find out a way to tailor its structure. The TiO2 obtained was compared to the same version of titania but synthesized by a conventional sol-gel method with the objective of understanding the effect of ultrasound in the synthesis process. All synthesis experiments were focused on the preparation of a titania photocatalyst. Thus, the anatase photocatalytic active phase of titania was proven by X-ray diffraction. Additionally, the ultrasonation treatment proved to increase the crystallinity of titania samples, being one of the requirements to having good photocatalytic activity for titania. The influence of surfactant/titania precursor weight ratio on the structural (XRD), textural (N2-sorption measurements), morphological (TEM), surface chemistry (FTIR) and optical properties (UVDR) was investigated. It was observed that the crystallite size, specific surface area, band gap energy and even photocatalytic activity was affected by the synergism occurring between cavitation effect and the surfactant/titania precursor weight ratio. The study yielded interesting great results that could be considered for further application of ultrasound to tailor mesoporous titania features via sol-gel soft template synthesis, against conventional sol-gel process.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 558
Author(s):  
Thanida Charoensuk ◽  
Wannisa Thongsamrit ◽  
Chesta Ruttanapun ◽  
Pongsakorn Jantaratana ◽  
Chitnarong Sirisathitkul

Solution–processing methods were investigated as viable alternatives to produce the polymer-bonded barium hexaferrite (BaM). BaM powders were first synthesized by using the sol-gel auto-combustion method. While the ignition period in two synthesis batches varied, the morphology of hexagonal microplates and nanorods, as well as magnetic properties, were reproduced. To prepare magnetic polymer composites, these BaM powders were then incorporated into the acrylonitrile-butadiene-styrene (ABS) matrix with a weight ratio of 80:20, 70:30, and 60:40 by using the solution casting method. Magnetizations were linearly decreased with a reduction in ferrite loading. Compared to the BaM loose powders and pressed pellet, both remanent and saturation magnetizations were lower and gave rise to comparable values of the squareness. The squareness around 0.5 of BaM samples and their composites revealed the isotropic alignment. Interestingly, the coercivity was significantly increased from 1727–1776 Oe in loose BaM powders to 1874–2052 Oe for the BaM-ABS composites. These composites have potential to be implemented in the additive manufacturing of rare-earth-free magnets.


2011 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Anirut Leksomboon ◽  
Bunjerd Jongsomjit

In this present study, the spherical silica support was synthesized from tetraethyloxysilane (TEOS), water, sodium hydroxide, ethylene glycol and n-dodecyltrimethyl ammonium bromide (C12TMABr). The particle size was controlled by variation of the ethylene glycol co-solvent weight ratio of a sol-gel method preparation in the range of 0.10 to 0.50. In addition, the particle size apparently increases with high weight ratio of co-solvent, but the particle size distribution was broader. The standard deviation of particle diameter is large when the co-solvent weight ratio is more than 0.35 and less than 0.15. However, the specific surface area was similar for all weight ratios ranging from 1000 to 1300 m2/g. The synthesized silica was spherical and has high specific surface area. The cobalt was impregnated onto the obtained silica to produce the cobalt catalyst used for CO2 hydrogenation.</


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Jafar Ai ◽  
Mostafa Rezaei-Tavirani ◽  
Esmaeil Biazar ◽  
Saeed Heidari K ◽  
Rahim Jahandideh

Hydroxyapatite is a biocompatible ceramic and reinforcing material for bone implantations. In this study, Starch-chitosan hydrogel was produced using the oxidation of starch solution and subsequently cross-linked with chitosan via reductive alkylation method (weight ratio (starch/chitosan): 0.38). The hydroxyapatite micropowders and nanopowders synthesized by sol-gel method (10, 20, 30, 40 %W) were composited to hydrogels and were investigated by mechanical analysis. The results of SEM images and Zetasizer experiments for synthesized nanopowders showed an average size of 100 nm. The nanoparticles distributed as uniform in the chitosan-starch film. The tensile modulus increased for composites containing hydroxyapatite nano-(size particle: 100 nanometer) powders than composites containing micro-(size particle: 100 micrometer) powders. The swelling percentage decreased for samples containing hydroxyapatite nanopowder than the micropowders. These nanocomposites could be applied for hard-tissue engineering.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jiyong Wei ◽  
Baibiao Huang ◽  
Peng Wang ◽  
Zeyan Wang ◽  
Xiaoyan Qin ◽  
...  

Undoped and nitrogen-doped Bi12TiO20materials were synthesized by urea addition sol-gel method. By adding urea, undoped, and N-doped gel-type precursors were synthesized by low-temperature dehydrolyzation. Nitrogen-doped and undoped nanocrystalline Bi12TiO20were prepared by annealing at 600∘C for 30 minutes. From UV-Vis absorption and diffuse reflection spectrum, the absorbing band shifted from 420 to 500 nm by nitrogen doping. The bonds of Ti–N and N–O were identified by XPS spectra from the prepared materials, and the enhancement of visible light absorption was attributed to nitrogen's substitution of oxygen. Photocatalytic properties of prepared materials were characterized by the decomposition of Rhodamine B illuminated by whole spectra of 300 W Xe light. The photocatalystBi12TiO20−yNy(y=0.03) with N/(N+O) mole ratio about 3% shows better performance than that of heavily dopedBi12TiO20−zNz(z=0.06), undoped Bi12TiO20, and light-dopedBi12TiO20−xNx(x=0.01) photocatalysts due to its better crystalline morphology.


Sign in / Sign up

Export Citation Format

Share Document