Calorimetric characterization of Portland limestone cement produced by intergrinding

2011 ◽  
Vol 109 (1) ◽  
pp. 153-161 ◽  
Author(s):  
V. F. Rahhal ◽  
E. F. Irassar ◽  
M. A. Trezza ◽  
V. L. Bonavetti
2020 ◽  
Vol 5 (12) ◽  
pp. 126-129
Author(s):  
Stephen A. Odewale ◽  
Atilade A. Oladunni ◽  
Babatunde O. Oyewale

Chemical characterization of Portland limestone cement products collected across the nine existing cement manufacturing plants in Nigeria was conducted using Energy Dispersive X-ray Fluorescence Spectrometer (EDXRF) with the aim of determining conformity with global and local standards and investigating likely variation in quality resulting from differences in the sources of major raw materials, especially limestone used in production. The cement samples are composed essentially of CaO, SiO2, Al2O3, Fe2O3, MgO, Na2O, K2O and SO3 while P2O5, MnO and TiO2 were present in trace amount. In addition to oxide compositions, the mineralogical components: Alite (C3S), Belite (C2S), Celite (C3A), and Ferrite (C4AF), and other cement quality control variables such as Lime Saturation Factor, Silica Modulus and Alumina Modulus of all the nine cement samples analyzed in this study are in agreement with the specifications for Portland limestone cement published by the Standard Organisation of Nigeria (SON), the American Society for Testing and Materials (ASTM), and the British Standards Institution (BSI). The nine cement products also have their compositions in close proportion indicating none of the products is superior in quality irrespective of manufacturer or production site, a common misconception in the Nigerian cement market.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 905 ◽  
Author(s):  
Lochana Poudyal ◽  
Kushal Adhikari ◽  
Moon Won

Despite lower environmental impacts, the use of Portland Limestone Cement (PLC) concrete has been limited due to its reduced later age strength and compromised durability properties. This research evaluates the effects of nano calcium carbonate (CaCO3) on the performance of PLC concrete. The study follows a series of experiments on the fresh, hardened, and durability properties of PLC concrete with different replacement rates of nano CaCO3. Incorporation of 1% nano CaCO3 into PLC concrete provided the optimal performance, where the 56 days compressive strength was increased by approximately 7%, and the permeability was reduced by approximately 13% as compared to Ordinary Portland Cement (OPC) concrete. Further, improvements were observed in other durability aspects such as Alkali-Silica Reaction (ASR) and scaling resistance. Additionally, nano CaCO3 has the potential to be produced within the cement plant while utilizing the CO2 emissions from the cement industries. The integration of nanotechnology in PLC concrete thus will help produce a more environment-friendly concrete with enhanced performance. More in-depth study on commercial production of nano CaCO3 thus has the potential to offer a new generation cement—sustainable, economical, and durable cement—leading towards green infrastructure and global environmental sustainability.


2021 ◽  
Vol 54 (2) ◽  
Author(s):  
Athanasios Malakopoulos ◽  
Manolis Chatzigeorgiou ◽  
Nikos Boukos ◽  
Athanasios Salifoglou

2020 ◽  
Vol 72 (3) ◽  
pp. 134-148 ◽  
Author(s):  
Meng Wu ◽  
Yunsheng Zhang ◽  
Yongsheng Ji ◽  
Guojian Liu ◽  
Wei She ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document