scholarly journals Polymorphism and melt crystallisation of racemic betaxolol, a β-adrenergic antagonist drug

2012 ◽  
Vol 111 (3) ◽  
pp. 2171-2178 ◽  
Author(s):  
Teresa M. R. Maria ◽  
Ricardo A. E. Castro ◽  
M. Ramos Silva ◽  
M. Luísa Ramos ◽  
Licínia L. G. Justino ◽  
...  
1992 ◽  
Vol 68 (05) ◽  
pp. 545-549 ◽  
Author(s):  
W L Chandler ◽  
S C Loo ◽  
D Mornin

SummaryThe purpose of this study was to determine whether different regions of the rabbit vascular system show variations in the rate of plasminogen activator (PA) secretion. To start, we evaluated the time course, dose response and adrenergic specificity of PA release. Infusion of 1 µg/kg of epinephrine stimulated a 116 ± 60% (SD) increase in PA activity that peaked 30 to 60 s after epinephrine administration. Infusion of 1 µg/kg of norepinephrine, isoproterenol and phenylephrine had no effect on PA activity. Pretreatment with phentolamine, an alpha adrenergic antagonist, blocked the release of PA by epinephrine while pretreatment with the beta blocker propranolol had no effect. This suggests that PA release in the rabbit was mediated by some form of alpha receptor.Significant arterio-venous differences in basal PA activity were found across the pulmonary and splanchnic vascular beds but not the lower extremity/pelvic bed. After stimulation with epinephrine, PA activity increased 46% across the splanchnic bed while no change was seen across the lower extremity/pelvic bed. We conclude that several vascular beds contribute to circulating PA activity in the rabbit, and that these beds secrete PA at different rates under both basal and stimulated conditions.


Author(s):  
К.А. Никифорова ◽  
В.В. Александрин ◽  
П.О. Булгакова ◽  
А.В. Иванов ◽  
Э.Д. Вирюс ◽  
...  

Цель. Установить влияние неспецифического адреноблокатора карведилола на редокс-статус низкомолекулярных аминотиолов (цистеин, гомоцистеин, глутатион) в плазме крови при моделировании глобальной ишемии головного мозга у крыс. Методика. Нами была использована модель глобальной ишемии (пережатие общих сонных артерий с геморрагией длительностью 15 мин). Препарат вводили за 1 ч до операции. Уровни аминотиолов измеряли через 40 мин после начала реперфузии. Анализ уровня аминотиолов проводили методом жидкостной хроматографии. Результаты. Установлено, что у крыс, не подвергавшихся ишемии, карведилол в дозе 10 мг/кг вызывает рост редокс-статуса цистеина и глутатиона (в 3 и 3,5 раза соответственно по сравнению с контролем, p = 0,04 и p = 0,008) за счет увеличения их восстановленных форм. При ишемии данного эффекта не наблюдалось. Редокс-статус у крыс с ишемией на фоне карведилола (Цис = 0,85 ± 0,14%, Глн = 1,8 ± 0,7%, Гцис = 1,1 ± 0,8%) оставался таким же низким, как и у крыс с ишемией без введения карведилола (р > 0,8). Заключение. Полученный результат демонстрирует, что в условиях ишемии головного мозга карведилол не оказывает эффекта на гомеостаз аминотиолов плазмы крови, несмотря на выраженный антиоксидантный эффект в нормальных условиях. Aim. Effect of a nonspecific adrenergic antagonist carvedilol on the redox status of plasma low-molecular-weight aminothiols (cysteine, homocysteine, glutathione) was studied in rats with global cerebral ischemia (occlusion of common carotid arteries with hemorrhage). Methods. A model of global ischemia (occlusion of common carotid arteries with 15-min hemorrhage) was used. The drugs were administered one hour before the operation. Aminothiol levels were measured by HPLC with UV detection at 40 minutes after the onset of reperfusion. Results. Carvedilol 10 mg/kg increased the redox status of cysteine and glutathione in rats not exposed to ischemia (3 and 3.5 times, respectively, compared with the control, p = 0.04 and p = 0.008, respectively) but not of homocysteine, by increasing their reduced forms. However, this effect was not observed in ischemia. In rats with ischemia treated with carvedilol, the redox status (Cys = 0.85 ± 0.14%, GSH = 1.8 ± 0.7%, Hcys = 1.1 ± 0.8%) remained low similar to that in rats with ischemia not treated with carvedilol (p >0.8, 0.8, and 0.9, respectively). Conclusion. Carvedilol did not affect the homeostasis of blood plasma thiols in cerebral ischemia despite the pronounced antioxidant effect under the normal conditions.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 291
Author(s):  
Rossalin Yonpiam ◽  
Jair Gobbet ◽  
Ashok Jadhav ◽  
Kaushik Desai ◽  
Barry Blakley ◽  
...  

Ergotism is a common and increasing problem in Saskatchewan’s livestock. Chronic exposure to low concentrations of ergot alkaloids is known to cause severe arterial vasoconstriction and gangrene through the activation of adrenergic and serotonergic receptors on vascular smooth muscles. The acute vascular effects of a single oral dose with high-level exposure to ergot alkaloids remain unknown and are examined in this study. This study had two main objectives; the first was to evaluate the role of α1-adrenergic receptors in mediating the acute vasocontractile response after single-dose exposure in sheep. The second was to examine whether terazosin (TE) could abolish the vascular contractile effects of ergot alkaloids. Twelve adult female sheep were randomly placed into control and exposure groups (n = 6/group). Ergot sclerotia were collected and finely ground. The concentrations of six ergot alkaloids (ergocornine, ergocristine, ergocryptine, ergometrine, ergosine, and ergotamine) were determined using HPLC/MS at Prairie Diagnostic Services Inc., (Saskatoon, SK, Canada). Each ewe within the treatment group received a single oral treatment of ground ergot sclerotia at a dose of 600 µg/kg BW (total ergot) while each ewe in the control group received water. Animals were euthanized 12 h after the treatment, and the pedal artery (dorsal metatarsal III artery) from the left hind limb from each animal was carefully dissected and mounted in an isolated tissue bath. The vascular contractile response to phenylephrine (PE) (α1-adrenergic agonist) was compared between the two groups before and after TE (α1-adrenergic antagonist) treatment. Acute exposure to ergot alkaloids resulted in a 38% increase in vascular sensitivity to PE compared to control (Ctl EC50 = 1.74 × 10−6 M; Exp EC50 = 1.079 × 10−6 M, p = 0.046). TE treatment resulted in a significant dose-dependent increase in EC50 in both exposure and control groups (p < 0.05 for all treatments). Surprisingly, TE effect was significantly more pronounced in the ergot exposed group compared to the control group at two of the three concentrations of TE (TE 30 nM, p = 0.36; TE 100 nM, p < 0.001; TE 300 nM, p < 0.001). Similar to chronic exposure, acute exposure to ergot alkaloids results in increased vascular sensitivity to PE. TE is a more potent dose-dependent antagonist for the PE contractile response in sheep exposed to ergot compared to the control group. This study may indicate that the dry gangrene seen in sheep, and likely other species, might be related to the activation of α1-adrenergic receptor. This effect may be reversed using TE, especially at early stages of the disease before cell death occurs. This study may also indicate that acute-single dose exposure scenario may be useful in the study of vascular effects of ergot alkaloids.


1999 ◽  
Vol 276 (1) ◽  
pp. L1-L8 ◽  
Author(s):  
Edward Abraham ◽  
Debra J. Kaneko ◽  
Robert Shenkar

Endotoxemia produces elevations in catecholamine levels in the pulmonary and systemic circulation as well as rapid increases in neutrophil number and proinflammatory cytokine expression in the lungs. In the present experiments, we examined the effects of endogenous and exogenous adrenergic stimulation on endotoxin-induced lung neutrophil accumulation and activation. Levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 mRNAs were increased in lung neutrophils from endotoxemic mice compared with those present in lung neutrophils from control mice or in peripheral blood neutrophils from endotoxemic or control mice. Treatment with the β-adrenergic antagonist propranolol before endotoxin administration did not affect trafficking of neutrophils to the lungs or the expression of IL-1β, TNF-α, or MIP-2 by lung neutrophils. Administration of the α-adrenergic antagonist phentolamine before endotoxemia did not alter lung neutrophil accumulation as measured by myeloperoxidase (MPO) levels but did result in significant increases in IL-1β, TNF-α, and MIP-2 mRNA expression by lung neutrophils compared with endotoxemia alone. Administration of the α1-adrenergic agonist phenylephrine before endotoxin did not affect trafficking of neutrophils to the lungs but was associated with significantly increased expression of TNF-α and MIP-2 mRNAs by lung neutrophils compared with that found after endotoxin alone. In contrast, treatment with the α2-adrenergic agonist UK-14304 prevented endotoxin-induced increases in lung MPO and lung neutrophil cytokine mRNA levels. The suppressive effects of UK-14304 on endotoxin-induced increases in lung MPO were not affected by administration of the nitric oxide synthase inhibitor N-nitro-l-arginine methyl ester. These data demonstrate that the initial accumulation and activation of neutrophils in the lungs after endotoxemia can be significantly diminished by α2-adrenergic stimulation. Therapy with α2-adrenergic agents may have a role in modulating inflammatory pulmonary processes associated with sepsis-induced acute lung injury.


1992 ◽  
Vol 66 (4) ◽  
pp. 273-278 ◽  
Author(s):  
E. V. Warbrick ◽  
S. A. Ward

ABSTRACTVarious catecholamines and catecholamine antagonists have been examined for their effects on the third larval moult of the parasitic nematode, Dirofilaria immitis, cultured in vitro. The non-selective α and β agonist, noradrenaline, and the β agonist, isoprenaline, had no effect on the timing of the third stage moult when used at a concentration of 10−5M. The α-adrenergic antagonist. phentolamine, resulted in worm mortality at 10−5M. At 10−7M, both phentolamine and the β-antagonist, propranolol caused a significant reduction in the numbers of larvae capable of completing the third stage moult. Idazoxan, an a2-antagonist, at 10−5M did not affect worm mortality but did completely prevent ecdysis. The potential of these compounds as possible filaricides is discussed.


1989 ◽  
Vol 67 (10) ◽  
pp. 1199-1204 ◽  
Author(s):  
J. A. Armour

The augmentation of ventricular inotropism induced by electrical stimulation of acutely decentralized efferent sympathetic preganglionic axons was reduced, but still present, following administraiton of hexamethonium (10 mg/kg i.v.). While hexamethonium continued to be administered, the cardiac augmentations so induced were enhanced significantly following administration of the α-adrenergic receptor blocking agent, phentolamine myselate (1 mg/kg i.v.). Stimulation of the sympathetic efferent postganglionic axons in cardiopulmonary nerves induced cardiac augmentations that were unchanged following administration of these agents singly or together. The cardiac augmentations induced by stimulation of efferent preganglionic sympathetic axons were unchanged when phentolamine was administered alone. The augmentations of cardiac inotropism induced by efferent postganglionic sympathetic axonal stimulation were decreased following local administration of the β-adrenergic antagonist timolol into the ipsilateral stellate and middle cervical ganglia. Thereafter, these augmentations were unchanged following the subsequent intravenous administration of phentolamine. It is concluded that the activation of cardiac neurons in the stellate and middle cervical ganglia by stimulation of efferent preganglionic sympathetic axons can be modified by α-adrenergic receptors and that these effects are dependent upon β-adrenergic receptors, not nicotinic ones, in intrathoracic ganglia.Key words: α-adrenergic inotropism, sympathetic ganglia, hexamethonium, phentolamine.


2001 ◽  
Vol 121 (1) ◽  
pp. 88-92 ◽  
Author(s):  
A König ◽  
A Schreiner
Keyword(s):  

1979 ◽  
Vol 59 (3-4) ◽  
pp. 303-306 ◽  
Author(s):  
Thomas Cote ◽  
Masahide Munemura ◽  
John Kebabian

1994 ◽  
Vol 188 (1) ◽  
pp. 205-216 ◽  
Author(s):  
T Uesaka ◽  
K Yano ◽  
M Yamasaki ◽  
K Nagashima ◽  
M Ando

Four somatostatin-related peptides were isolated from eel guts. Two of them were the same as eel SS-25II (eSS-25II) and eel SS-25I (eSS-25I) isolated from European eel pancreas. The remaining two peptides were C-terminal tetradecapeptides (eSS-14II and eSS-14I) of eSS-25II and eSS-25I, respectively. These four peptides all enhanced the serosa-negative transepithelial potential difference and short-circuit current across the seawater eel intestine after pretreatment with isobutylmethylxanthine, serotonin (5-HT) and methacholine, an agonist of acetylcholine (ACh). Among these peptides, eSS-25II was the most potent enhancer, followed by eSS-25I and eSS-14II. Since the large peptide (eSS-25II) acts at a lower concentration than the small somatostatin (eSS-14II), the 11 N-terminal amino acid residues seem to potentiate somatostatin action in the eel intestine. In contrast, eSS-14II was more potent than mammalian SS-14, indicating that the three amino acid residues (Tyr18, Gly21, Pro22) in the C-terminal portion also contribute to the potency of somatostatin. Endogenous somatostatin (eSS-25II) activated net Na+, Cl- and water fluxes across the seawater eel intestine. This stimulatory action was not inhibited by tetrodotoxin or yohimbine, an adrenergic antagonist, indicating that eSS-25II does not act through neuronal firing or through catecholamine release. Thus, eel somatostatins may act directly on the enterocytes, but on a distinct receptor from that for adrenaline, to antagonize the inhibition of NaCl and water absorption by 5-HT and ACh in the seawater eel intestine.


Sign in / Sign up

Export Citation Format

Share Document