Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid

2012 ◽  
Vol 114 (1) ◽  
pp. 253-259 ◽  
Author(s):  
Chuanmei Jiao ◽  
Jinlong Zhuo ◽  
Xilei Chen ◽  
Shaoxiang Li ◽  
Huajin Wang
2019 ◽  
Vol 48 (3) ◽  
pp. 197-201
Author(s):  
Buqin Xu ◽  
Guilong Xu ◽  
Hui Qiao ◽  
Yun Liang ◽  
Jin Yang ◽  
...  

Purpose The flammability of poly-acrylate (PA) resin is a major disadvantage in applications that require flame resistance. It has been reported that a flame-retardant PA resin could be prepared by covalent incorporate phosphorous containing monomer with vinyl group via free radical polymerization, and the prepared modified PA resin is expected to exhibit better flame resistance than those by an additive approach. However, the phosphorus-containing monomers reported previously are made from expensive or toxic materials, and the production procedure is tedious and under harsh reaction conditions, which are not feasible for industrial application. Therefore, the purpose of this paper is the preparation of flame-retardant PA resin modified by epoxy resin phosphorous acid (EPPA) and the study of its flame retardancy. Design/methodology/approach EPPA is first prepared by epoxy resin E-51 and phosphorous acid and then used to prepare phosphorous containing PA resin by free radical polymerization. The flame retardancy of the prepared EPPA-modified PA (EPPA-PA) resin is studied. Findings The results show that EPPA can graft onto the PA polymer chain by free radical polymerization, the flame retardancy of the EPPA-PA resin increases as the EPPA content increasing. The flame retardancy of EPPA-PA resin prepared reaches 27.8% and can pass the V-0 rating in the UL-94 test when EPPA content is 30.0%. SEM and EDS results indicate that phosphorous element in the EPPA-PA resin shows a condensed-phase flame retardant effect. Research limitations/implications The grafting degree of EPPA cannot be accurately tested. Practical implications It is expected that the large-scale production of this epoxy resin phosphoric acid modified PA resin will enable practical industrial applications. Originality/value This method for synthesis of epoxy resin phosphoric acid modified PA resin is newfrangled.


2014 ◽  
Vol 665 ◽  
pp. 307-310 ◽  
Author(s):  
Chun Feng Sun ◽  
Ming Gao

The cheaper phosphoric acid was uesd to replace the phosphorus oxychloride, starch was used to replace pentaerythritol and water as solvent to synthesize a new low-cost intumescent flame retardant (IFR)—starch phosphate ethylenediamine salts. The structure of the IFR was characterized with infrared spectroscopy. The IFR was used to impart flame retardancy to the Epoxy self-leveling floor (Epoxy Resin, EP) to get the fireproof Epoxy self-leveling floor. The results of test showed that 20% of IFR limit oxygen index of EP/IFR composite reach 31.0%. The results show that flame retardant catalyze the pyrolysis of epoxy resin into charcoal; Vertical burning passed UL94 V-0 rating.


RSC Advances ◽  
2016 ◽  
Vol 6 (64) ◽  
pp. 59226-59236 ◽  
Author(s):  
Xiaomin Zhao ◽  
Heeralal Vignesh Babu ◽  
Javier Llorca ◽  
De-Yi Wang

This work aimed to investigate the effect of two types ofphosphorus-containing flame retardants (P-FRs) with different chemical surroundings on flame-retardant efficiency for diglycidyl ester of bisphenol-A type epoxy (EP).


Author(s):  
Zhong Liu ◽  
Zhao Yu ◽  
Tang Qiaolin ◽  
Zhang Kaixin ◽  
Deng Weihao ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 419-430
Author(s):  
Ankur Bajpai ◽  
James R. Davidson ◽  
Colin Robert

The tensile fracture mechanics and thermo-mechanical properties of mixtures composed of two kinds of epoxy resins of different chemical structures and functional groups were studied. The base resin was a bi-functional epoxy resin based on diglycidyl ether of bisphenol-A (DGEBA) and the other resins were (a) distilled triglycidylether of meta-amino phenol (b) 1, 6–naphthalene di epoxy and (c) fluorene di epoxy. This research shows that a small number of multifunctional epoxy systems, both di- and tri-functional, can significantly increase tensile strength (14%) over neat DGEBA while having no negative impact on other mechanical properties including glass transition temperature and elastic modulus. In fact, when compared to unmodified DGEBA, the tri-functional epoxy shows a slight increase (5%) in glass transition temperature at 10 wt.% concentration. The enhanced crosslinking of DGEBA (90 wt.%)/distilled triglycidylether of meta-amino phenol (10 wt.%) blends may be the possible reason for the improved glass transition. Finally, the influence of strain rate, temperature and moisture were investigated for both the neat DGEBA and the best performing modified system. The neat DGEBA was steadily outperformed by its modified counterpart in every condition.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Rong Hu ◽  
Kaibin He ◽  
Xianghong Zheng ◽  
Birong Zeng ◽  
Guorong Chen ◽  
...  
Keyword(s):  

2021 ◽  
pp. 51230
Author(s):  
Fu‐Qu Pang ◽  
Xin‐Duo Liu ◽  
Xian‐Ting Zheng ◽  
Yu‐Cai Lin ◽  
Rong‐Kun Jian

Sign in / Sign up

Export Citation Format

Share Document