scholarly journals Correction to: The volume-based properties for dimensional analysis of micro heat exchanger

2019 ◽  
Vol 139 (5) ◽  
pp. 3273-3273
Author(s):  
Ankush D. Tharkar ◽  
Shripad P. Mahulikar
2014 ◽  
Vol 36 (7-8) ◽  
pp. 731-740 ◽  
Author(s):  
Martin Schoenitz ◽  
Jan Henrik Finke ◽  
Sebastian Melzig ◽  
Annika Hohlen ◽  
Nils Warmeling ◽  
...  

2006 ◽  
Vol 326-328 ◽  
pp. 265-268
Author(s):  
Taek Joon Son ◽  
Young Shin Lee

The strength of micro heat exchanger under pressure is studied in this paper. Micro heat exchanger is made with brazing technology. It is constructed of stainless steel thin plates with micro channels and in/out port for fluid flow. Micro channels in thin plates are formed by etching and all parts including thin plates are joined by brazing. The study on the strength under pressure is performed by structural analysis. For structural analysis, one layer of micro heat exchanger body is considered. It is composed of thin plate with micro channel and brazing filler which is used to join thin plates. This paper shows the tendency of stress behavior and gives design guideline of micro heat exchanger.


2012 ◽  
Vol 562-564 ◽  
pp. 1776-1779
Author(s):  
Yue Han ◽  
Heng Zhi Cai ◽  
Ya Jun Zhang ◽  
Da Ming Wu ◽  
Xin Liang Wang

The heat exchanger is widely used in energy engineering, chemical engineering etc. And with development of the MEMS (Micro Electro Mechanical Systems), many researchers are interested in the micro heat exchanger. In this paper, the micro plastic heat exchangers are manufactured by modified PPS. A heat exchanger with polypropylene (PP) is also made for comparison. Simulation and experiment are carried out to determine the thermal performance of the micro plastic heat exchangers. The experimental results are compared with that of simulation. The results show the performance of the micro plastic heat exchanger is very close to that of metal heat exchanger with the same dimension.


2004 ◽  
Vol 126 (3) ◽  
pp. 434-444 ◽  
Author(s):  
Christophe Marques ◽  
Kevin W. Kelly

Nickel micro pin fin heat exchangers can be electroplated directly onto planar or non-planar metal surfaces using a derivative of the LIGA micromachining process. These heat exchangers offer the potential to more effectively control the temperature of surfaces in high heat flux applications. Of particular interest is the temperature control of gas turbine engine components. The components in the gas turbine engine that require efficient, improved cooling schemes include the gas turbine blades, the stator vanes, the turbine disk, and the combustor liner. Efficient heating of component surfaces may also be required (i.e., surfaces near the compressor inlet to prevent deicing). In all cases, correlations providing the Nusselt number and the friction factor are needed for such micro pin fin heat exchangers. Heat transfer and pressure loss experimental results are reported for a flat parallel plate pin fin micro heat exchanger with a staggered pin fin array, with height-to-diameter ratios of 1.0, with spacing-to-diameter ratios of 2.5 and for Reynolds numbers (based on the hydraulic diameter of the channel) from 4000 to 20,000. The results are compared to studies of larger scale, but geometrically similar, pin fin heat exchangers. To motivate further research, an analytic model is described which uses the empirical results from the pin fin heat exchanger experiments to predict a cooling effectiveness exceeding 0.82 in a gas turbine blade cooling application. As a final point, the feasibility of fabricating a relatively complex micro heat exchanger on a simple airfoil (a cylinder) is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document