scholarly journals Embedding and extraction of knowledge in tree ensemble classifiers

2021 ◽  
Author(s):  
Wei Huang ◽  
Xingyu Zhao ◽  
Xiaowei Huang

AbstractThe embedding and extraction of knowledge is a recent trend in machine learning applications, e.g., to supplement training datasets that are small. Whilst, as the increasing use of machine learning models in security-critical applications, the embedding and extraction of malicious knowledge are equivalent to the notorious backdoor attack and defence, respectively. This paper studies the embedding and extraction of knowledge in tree ensemble classifiers, and focuses on knowledge expressible with a generic form of Boolean formulas, e.g., point-wise robustness and backdoor attacks. For the embedding, it is required to be preservative (the original performance of the classifier is preserved), verifiable (the knowledge can be attested), and stealthy (the embedding cannot be easily detected). To facilitate this, we propose two novel, and effective embedding algorithms, one of which is for black-box settings and the other for white-box settings. The embedding can be done in PTIME. Beyond the embedding, we develop an algorithm to extract the embedded knowledge, by reducing the problem to be solvable with an SMT (satisfiability modulo theories) solver. While this novel algorithm can successfully extract knowledge, the reduction leads to an NP computation. Therefore, if applying embedding as backdoor attacks and extraction as defence, our results suggest a complexity gap (P vs. NP) between the attack and defence when working with tree ensemble classifiers. We apply our algorithms to a diverse set of datasets to validate our conclusion extensively.

Author(s):  
Kacper Sokol ◽  
Peter Flach

Understanding data, models and predictions is important for machine learning applications. Due to the limitations of our spatial perception and intuition, analysing high-dimensional data is inherently difficult. Furthermore, black-box models achieving high predictive accuracy are widely used, yet the logic behind their predictions is often opaque. Use of textualisation -- a natural language narrative of selected phenomena -- can tackle these shortcomings. When extended with argumentation theory we could envisage machine learning models and predictions arguing persuasively for their choices.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Meike Nauta ◽  
Ricky Walsh ◽  
Adam Dubowski ◽  
Christin Seifert

Machine learning models have been successfully applied for analysis of skin images. However, due to the black box nature of such deep learning models, it is difficult to understand their underlying reasoning. This prevents a human from validating whether the model is right for the right reasons. Spurious correlations and other biases in data can cause a model to base its predictions on such artefacts rather than on the true relevant information. These learned shortcuts can in turn cause incorrect performance estimates and can result in unexpected outcomes when the model is applied in clinical practice. This study presents a method to detect and quantify this shortcut learning in trained classifiers for skin cancer diagnosis, since it is known that dermoscopy images can contain artefacts. Specifically, we train a standard VGG16-based skin cancer classifier on the public ISIC dataset, for which colour calibration charts (elliptical, coloured patches) occur only in benign images and not in malignant ones. Our methodology artificially inserts those patches and uses inpainting to automatically remove patches from images to assess the changes in predictions. We find that our standard classifier partly bases its predictions of benign images on the presence of such a coloured patch. More importantly, by artificially inserting coloured patches into malignant images, we show that shortcut learning results in a significant increase in misdiagnoses, making the classifier unreliable when used in clinical practice. With our results, we, therefore, want to increase awareness of the risks of using black box machine learning models trained on potentially biased datasets. Finally, we present a model-agnostic method to neutralise shortcut learning by removing the bias in the training dataset by exchanging coloured patches with benign skin tissue using image inpainting and re-training the classifier on this de-biased dataset.


2020 ◽  
Vol 90 ◽  
pp. 101698
Author(s):  
Yizhi Ren ◽  
Qi Zhou ◽  
Zhen Wang ◽  
Ting Wu ◽  
Guohua Wu ◽  
...  

As Artificial Intelligence penetrates all aspects of human life, more and more questions about ethical practices and fair uses arise, which has motivated the research community to look inside and develop methods to interpret these Artificial Intelligence/Machine Learning models. This concept of interpretability can not only help with the ethical questions but also can provide various insights into the working of these machine learning models, which will become crucial in trust-building and understanding how a model makes decisions. Furthermore, in many machine learning applications, the feature of interpretability is the primary value that they offer. However, in practice, many developers select models based on the accuracy score and disregarding the level of interpretability of that model, which can be chaotic as predictions by many high accuracy models are not easily explainable. In this paper, we introduce the concept of Machine Learning Model Interpretability, Interpretable Machine learning, and the methods used for interpretation and explanations.


2021 ◽  
Author(s):  
◽  
Benjamin Evans

<p>Ensemble learning is one of the most powerful extensions for improving upon individual machine learning models. Rather than a single model being used, several models are trained and the predictions combined to make a more informed decision. Such combinations will ideally overcome the shortcomings of any individual member of the ensemble. Most ma- chine learning competition winners feature an ensemble of some sort, and there is also sound theoretical proof to the performance of certain ensem- bling schemes. The benefits of ensembling are clear in both theory and practice.  Despite the great performance, ensemble learning is not a trivial task. One of the main difficulties is designing appropriate ensembles. For exam- ple, how large should an ensemble be? What members should be included in an ensemble? How should these members be weighted? Our first contribution addresses these concerns using a strongly-typed population- based search (genetic programming) to construct well-performing ensem- bles, where the entire ensemble (members, hyperparameters, structure) is automatically learnt. The proposed method was found, in general, to be significantly better than all base members and commonly used compari- son methods trialled.  With automatically designed ensembles, there is a range of applica- tions, such as competition entries, forecasting and state-of-the-art predic- tions. However, often these applications also require additional prepro- cessing of the input data. Above the ensemble considers only the original training data, however, in many machine learning scenarios a pipeline is required (for example performing feature selection before classification). For the second contribution, a novel automated machine learning method is proposed based on ensemble learning. This method uses a random population-based search of appropriate tree structures, and as such is em- barrassingly parallel, an important consideration for automated machine learning. The proposed method is able to achieve equivalent or improved results over the current state-of-the-art methods and does so in a fraction of the time (six times as fast).  Finally, while complex ensembles offer great performance, one large limitation is the interpretability of such ensembles. For example, why does a forest of 500 trees predict a particular class for a given instance? In an effort to explain the behaviour of complex models (such as ensem- bles), several methods have been proposed. However, these approaches tend to suffer at least one of the following limitations: overly complex in the representation, local in their application, limited to particular fea- ture types (i.e. categorical only), or limited to particular algorithms. For our third contribution, a novel model agnostic method for interpreting complex black-box machine learning models is proposed. The method is based on strongly-typed genetic programming and overcomes the afore- mentioned limitations. Multi-objective optimisation is used to generate a Pareto frontier of simple and explainable models which approximate the behaviour of much more complex methods. We found the resulting rep- resentations are far simpler than existing approaches (an important con- sideration for interpretability) while providing equivalent reconstruction performance.  Overall, this thesis addresses two of the major limitations of existing ensemble learning, i.e. the complex construction process and the black- box models that are often difficult to interpret. A novel application of ensemble learning in the field of automated machine learning is also pro- posed. All three methods have shown at least equivalent or improved performance than existing methods.</p>


Sign in / Sign up

Export Citation Format

Share Document