scholarly journals Population-based Ensemble Learning with Tree Structures for Classification

2021 ◽  
Author(s):  
◽  
Benjamin Evans

<p>Ensemble learning is one of the most powerful extensions for improving upon individual machine learning models. Rather than a single model being used, several models are trained and the predictions combined to make a more informed decision. Such combinations will ideally overcome the shortcomings of any individual member of the ensemble. Most ma- chine learning competition winners feature an ensemble of some sort, and there is also sound theoretical proof to the performance of certain ensem- bling schemes. The benefits of ensembling are clear in both theory and practice.  Despite the great performance, ensemble learning is not a trivial task. One of the main difficulties is designing appropriate ensembles. For exam- ple, how large should an ensemble be? What members should be included in an ensemble? How should these members be weighted? Our first contribution addresses these concerns using a strongly-typed population- based search (genetic programming) to construct well-performing ensem- bles, where the entire ensemble (members, hyperparameters, structure) is automatically learnt. The proposed method was found, in general, to be significantly better than all base members and commonly used compari- son methods trialled.  With automatically designed ensembles, there is a range of applica- tions, such as competition entries, forecasting and state-of-the-art predic- tions. However, often these applications also require additional prepro- cessing of the input data. Above the ensemble considers only the original training data, however, in many machine learning scenarios a pipeline is required (for example performing feature selection before classification). For the second contribution, a novel automated machine learning method is proposed based on ensemble learning. This method uses a random population-based search of appropriate tree structures, and as such is em- barrassingly parallel, an important consideration for automated machine learning. The proposed method is able to achieve equivalent or improved results over the current state-of-the-art methods and does so in a fraction of the time (six times as fast).  Finally, while complex ensembles offer great performance, one large limitation is the interpretability of such ensembles. For example, why does a forest of 500 trees predict a particular class for a given instance? In an effort to explain the behaviour of complex models (such as ensem- bles), several methods have been proposed. However, these approaches tend to suffer at least one of the following limitations: overly complex in the representation, local in their application, limited to particular fea- ture types (i.e. categorical only), or limited to particular algorithms. For our third contribution, a novel model agnostic method for interpreting complex black-box machine learning models is proposed. The method is based on strongly-typed genetic programming and overcomes the afore- mentioned limitations. Multi-objective optimisation is used to generate a Pareto frontier of simple and explainable models which approximate the behaviour of much more complex methods. We found the resulting rep- resentations are far simpler than existing approaches (an important con- sideration for interpretability) while providing equivalent reconstruction performance.  Overall, this thesis addresses two of the major limitations of existing ensemble learning, i.e. the complex construction process and the black- box models that are often difficult to interpret. A novel application of ensemble learning in the field of automated machine learning is also pro- posed. All three methods have shown at least equivalent or improved performance than existing methods.</p>

2021 ◽  
Author(s):  
◽  
Benjamin Evans

<p>Ensemble learning is one of the most powerful extensions for improving upon individual machine learning models. Rather than a single model being used, several models are trained and the predictions combined to make a more informed decision. Such combinations will ideally overcome the shortcomings of any individual member of the ensemble. Most ma- chine learning competition winners feature an ensemble of some sort, and there is also sound theoretical proof to the performance of certain ensem- bling schemes. The benefits of ensembling are clear in both theory and practice.  Despite the great performance, ensemble learning is not a trivial task. One of the main difficulties is designing appropriate ensembles. For exam- ple, how large should an ensemble be? What members should be included in an ensemble? How should these members be weighted? Our first contribution addresses these concerns using a strongly-typed population- based search (genetic programming) to construct well-performing ensem- bles, where the entire ensemble (members, hyperparameters, structure) is automatically learnt. The proposed method was found, in general, to be significantly better than all base members and commonly used compari- son methods trialled.  With automatically designed ensembles, there is a range of applica- tions, such as competition entries, forecasting and state-of-the-art predic- tions. However, often these applications also require additional prepro- cessing of the input data. Above the ensemble considers only the original training data, however, in many machine learning scenarios a pipeline is required (for example performing feature selection before classification). For the second contribution, a novel automated machine learning method is proposed based on ensemble learning. This method uses a random population-based search of appropriate tree structures, and as such is em- barrassingly parallel, an important consideration for automated machine learning. The proposed method is able to achieve equivalent or improved results over the current state-of-the-art methods and does so in a fraction of the time (six times as fast).  Finally, while complex ensembles offer great performance, one large limitation is the interpretability of such ensembles. For example, why does a forest of 500 trees predict a particular class for a given instance? In an effort to explain the behaviour of complex models (such as ensem- bles), several methods have been proposed. However, these approaches tend to suffer at least one of the following limitations: overly complex in the representation, local in their application, limited to particular fea- ture types (i.e. categorical only), or limited to particular algorithms. For our third contribution, a novel model agnostic method for interpreting complex black-box machine learning models is proposed. The method is based on strongly-typed genetic programming and overcomes the afore- mentioned limitations. Multi-objective optimisation is used to generate a Pareto frontier of simple and explainable models which approximate the behaviour of much more complex methods. We found the resulting rep- resentations are far simpler than existing approaches (an important con- sideration for interpretability) while providing equivalent reconstruction performance.  Overall, this thesis addresses two of the major limitations of existing ensemble learning, i.e. the complex construction process and the black- box models that are often difficult to interpret. A novel application of ensemble learning in the field of automated machine learning is also pro- posed. All three methods have shown at least equivalent or improved performance than existing methods.</p>


2021 ◽  
Vol 11 (5) ◽  
pp. 2164
Author(s):  
Jiaxin Li ◽  
Zhaoxin Zhang ◽  
Changyong Guo

X.509 certificates play an important role in encrypting the transmission of data on both sides under HTTPS. With the popularization of X.509 certificates, more and more criminals leverage certificates to prevent their communications from being exposed by malicious traffic analysis tools. Phishing sites and malware are good examples. Those X.509 certificates found in phishing sites or malware are called malicious X.509 certificates. This paper applies different machine learning models, including classical machine learning models, ensemble learning models, and deep learning models, to distinguish between malicious certificates and benign certificates with Verification for Extraction (VFE). The VFE is a system we design and implement for obtaining plentiful characteristics of certificates. The result shows that ensemble learning models are the most stable and efficient models with an average accuracy of 95.9%, which outperforms many previous works. In addition, we obtain an SVM-based detection model with an accuracy of 98.2%, which is the highest accuracy. The outcome indicates the VFE is capable of capturing essential and crucial characteristics of malicious X.509 certificates.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


2020 ◽  
Author(s):  
Fei Qi ◽  
Zhaohui Xia ◽  
Gaoyang Tang ◽  
Hang Yang ◽  
Yu Song ◽  
...  

As an emerging field, Automated Machine Learning (AutoML) aims to reduce or eliminate manual operations that require expertise in machine learning. In this paper, a graph-based architecture is employed to represent flexible combinations of ML models, which provides a large searching space compared to tree-based and stacking-based architectures. Based on this, an evolutionary algorithm is proposed to search for the best architecture, where the mutation and heredity operators are the key for architecture evolution. With Bayesian hyper-parameter optimization, the proposed approach can automate the workflow of machine learning. On the PMLB dataset, the proposed approach shows the state-of-the-art performance compared with TPOT, Autostacker, and auto-sklearn. Some of the optimized models are with complex structures which are difficult to obtain in manual design.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Meike Nauta ◽  
Ricky Walsh ◽  
Adam Dubowski ◽  
Christin Seifert

Machine learning models have been successfully applied for analysis of skin images. However, due to the black box nature of such deep learning models, it is difficult to understand their underlying reasoning. This prevents a human from validating whether the model is right for the right reasons. Spurious correlations and other biases in data can cause a model to base its predictions on such artefacts rather than on the true relevant information. These learned shortcuts can in turn cause incorrect performance estimates and can result in unexpected outcomes when the model is applied in clinical practice. This study presents a method to detect and quantify this shortcut learning in trained classifiers for skin cancer diagnosis, since it is known that dermoscopy images can contain artefacts. Specifically, we train a standard VGG16-based skin cancer classifier on the public ISIC dataset, for which colour calibration charts (elliptical, coloured patches) occur only in benign images and not in malignant ones. Our methodology artificially inserts those patches and uses inpainting to automatically remove patches from images to assess the changes in predictions. We find that our standard classifier partly bases its predictions of benign images on the presence of such a coloured patch. More importantly, by artificially inserting coloured patches into malignant images, we show that shortcut learning results in a significant increase in misdiagnoses, making the classifier unreliable when used in clinical practice. With our results, we, therefore, want to increase awareness of the risks of using black box machine learning models trained on potentially biased datasets. Finally, we present a model-agnostic method to neutralise shortcut learning by removing the bias in the training dataset by exchanging coloured patches with benign skin tissue using image inpainting and re-training the classifier on this de-biased dataset.


Author(s):  
Kacper Sokol ◽  
Peter Flach

Understanding data, models and predictions is important for machine learning applications. Due to the limitations of our spatial perception and intuition, analysing high-dimensional data is inherently difficult. Furthermore, black-box models achieving high predictive accuracy are widely used, yet the logic behind their predictions is often opaque. Use of textualisation -- a natural language narrative of selected phenomena -- can tackle these shortcomings. When extended with argumentation theory we could envisage machine learning models and predictions arguing persuasively for their choices.


2020 ◽  
Vol 90 ◽  
pp. 101698
Author(s):  
Yizhi Ren ◽  
Qi Zhou ◽  
Zhen Wang ◽  
Ting Wu ◽  
Guohua Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document