The application of bees algorithm in finding the neutral stability curve for plane Poiseuille flow

Meccanica ◽  
2013 ◽  
Vol 48 (9) ◽  
pp. 2255-2261 ◽  
Author(s):  
S. S. Bahrainian ◽  
Z. Mehrdoost ◽  
A. Ghanbarzadeh
1968 ◽  
Vol 34 (1) ◽  
pp. 177-205 ◽  
Author(s):  
Chester E. Grosch ◽  
Harold Salwen

The linear stability of plane Poiseuille flow has been studied both for the steady flow and also for the case of a pressure gradient that is periodic in time. The disturbance streamfunction is expanded in a complete set of functions that satisfy the boundary conditions. The expansion is truncated after N terms, yielding a set of N linear first-order differential equations for the time dependence of the expansion coefficients.For the steady flow, calculations have been carried out for both symmetric and antisymmetric disturbances over a wide range of Reynolds numbers and disturbance wave-numbers. The neutral stability curve, curves of constant amplification and decay rate, and the eigenfunctions for a number of cases have been calculated. The eigenvalue spectrum has also been examined in some detail. The first N eigenvalues are obtained from the numerical calculations, and an asymptotic formula for the higher eigenvalues has been derived. For those values of the wave-number and Reynolds number for which calculations were carried out by L. H. Thomas, there is excellent agreement in both the eigenvalues and the eigenfunctions with the results of Thomas.For the time-dependent flow, it was found, for small amplitudes of oscillation, that the modulation tended to stabilize the flow. If the flow was not completely stabilized then the growth rate of the disturbance was decreased. For a particular wave-number and Reynolds number there is an optimum amplitude and frequency of oscillation for which the degree of stabilization is a maximum. For a fixed amplitude and frequency of oscillation the wave-number of the disturbance and the Reynolds number has been varied and a neutral stability curve has been calculated. The neutral stability curve for the modulated flow shows a higher critical Reynolds number and a narrower band of unstable wave-numbers than that of the steady flow. The physical mechanism responsible for this stabiIization appears to be an interference between the shear wave generated by the modulation and the disturbance.For large amplitudes, the modulation destabilizes the flow. Growth rates of the modulated flow as much as an order of magnitude greater than that of the steady unmodulated flow have been found.


2019 ◽  
Vol 880 ◽  
pp. 478-496 ◽  
Author(s):  
Shengqi Zhang ◽  
Zhenhua Xia ◽  
Yipeng Shi ◽  
Shiyi Chen

Spanwise rotating plane Poiseuille flow (RPPF) is one of the canonical flow problems to study the effect of system rotation on wall-bounded shear flows and has been studied a lot in the past. In the present work, a two-dimensional-three-component (2D/3C) model for RPPF is introduced and it is shown that the present model is equivalent to a thermal convection problem with unit Prandtl number. For low Reynolds number cases, the model can be used to study the stability behaviour of the roll cells. It is found that the neutral stability curves, critical eigensolutions and critical streamfunctions of RPPF at different rotation numbers ($Ro$) almost collapse with the help of a rescaling with a newly defined Rayleigh number $Ra$ and channel height $H$. Analytic expressions for the critical Reynolds number and critical wavenumber at different $Ro$ can be obtained. For a turbulent state with high Reynolds number, the 2D/3C model for RPPF is self-sustained even without extra excitations. Simulation results also show that the profiles of mean streamwise velocity and Reynolds shear stress from the 2D/3C model share the same linear laws as the fully three-dimensional cases, although differences on the intercepts can be observed. The contours of streamwise velocity fluctuations behave like plumes in the linear law region. We also provide an explanation to the linear mean velocity profiles observed at high rotation numbers.


2020 ◽  
Vol 31 (02) ◽  
pp. 2050031 ◽  
Author(s):  
Cong Zhai ◽  
Weitiao Wu

Understanding the pedestrian behavior contributes to traffic simulation and facility design/redesign. In practice, the interactions between individual pedestrians can lead to virtual honk effect, such as urging surrounding pedestrians to walk faster in a crowded environment. To better reflect the reality, this paper proposes a new lattice hydrodynamic model for bidirectional pedestrian flow with consideration of pedestrians’ honk effect. To this end, the concept of critical density is introduced to define the occurrence of pedestrians’ honk event. In the linear stability analysis, the stability condition of the new bidirectional pedestrian flow model is given based on the perturbation method, and the neutral stability curve is also obtained. Based on this, it is found that the honk effect has a significant impact on the stability of pedestrian flow. In the nonlinear stability analysis, the modified Korteweg–de Vries (mKdV) equation of the model is obtained based on the reductive perturbation method. By solving the mKdV equation, the kink-antikink soliton wave is obtained to describe the propagation mechanism and rules of pedestrian congestion near the neutral stability curve. The simulation example shows that the pedestrians’ honk effect can mitigate the pedestrians crowding efficiently and improve the stability of the bidirectional pedestrian flow.


2001 ◽  
Vol 434 ◽  
pp. 243-271 ◽  
Author(s):  
J. RAYMOND LEE SKARDA

Gravity modulation of an unbounded fluid layer with surface tension variations along its free surface is investigated. The stability of such systems is often characterized in terms of the wavenumber, α and the Marangoni number, Ma. In (α, Ma) parameter space, modulation has a destabilizing effect on the unmodulated neutral stability curve for large Prandtl number, Pr, and small modulation frequency, Ω, while a stabilizing effect is observed for small Pr and large Ω. As Ω → ∞ the modulated neutral stability curves approach the unmodulated neutral stability curve. At certain values of Pr and Ω, multiple minima are observed and the neutral stability curves become highly distorted. Closed regions of subharmonic instability are also observed. In (1/Ω, g1Ra)-space, where g1 is the relative modulation amplitude, and Ra is the Rayleigh number, alternating regions of synchronous and subharmonic instability separated by thin stable regions are observed. However, fundamental differences between the stability boundaries occur when comparing the modulated Marangoni–Bénard and Rayleigh–Bénard problems. Modulation amplitudes at which instability tongues occur are strongly influenced by Pr, while the fundamental instability region is weakly affected by Pr. For large modulation frequency and small amplitude, empirical relations are derived to determine modulation effects. A one-term Galerkin approximation was also used to reduce the modulated Marangoni–Bénard problem to a Mathieu equation, allowing qualitative stability behaviour to be deduced from existing tables or charts, such as Strutt diagrams. In addition, this reduces the parameter dependence of the problem from seven transport parameters to three Mathieu parameters, analogous to parameter reductions of previous modulated Rayleigh–Bénard studies. Simple stability criteria, valid for small parameter values (amplitude and damping coefficients), were obtained from the one-term equations using classical method of averaging results.


2011 ◽  
Vol 97-98 ◽  
pp. 546-549
Author(s):  
Xing Li Li ◽  
Tao Song ◽  
Hua Kuang

In this paper, a new viscous vehicular flow model proposed by Song et al is discussed from the perspective of the capability to reproduce nonlinear traffic behavors observed in real traffic. The linear stability condition for stationary and equilibrium flow is derived. Near the neutral stability curve, the Korteweg–de Vries (KdV) equation describing congested traffic pattern is derived with use of the reduction perturbation method. And the corresponding analytical soliton solution is obtained.


1974 ◽  
Vol 63 (4) ◽  
pp. 765-771 ◽  
Author(s):  
W. D. George ◽  
J. D. Hellums ◽  
B. Martin

Finite-amplitude disturbances in plane Poiseuille flow are studied by a method involving Fourier expansion with numerical solution of the resulting partial differential equations in the coefficient functions. A number of solutions are developed which extend to relatively long times so that asymptotic stability or instability can be established with a degree of confidence. The amplitude for neutral stability is established for a fixed wavenumber for two values of the Reynolds number. Details of the neutral velocity fluctuation are presented. These and earlier results are expressed in terms of the asymptotic amplitude and compared with results obtained by prior workers. The results indicate that the expansion methods used by prior workers may be valid only for amplitudes considerably smaller than 0·01.


1960 ◽  
Vol 9 (3) ◽  
pp. 353-370 ◽  
Author(s):  
J. T. Stuart

This paper considers the nature of a non-linear, two-dimensional solution of the Navier-Stokes equations when the rate of amplification of the disturbance, at a given wave-number and Reynolds number, is sufficiently small. Two types of problem arise: (i) to follow the growth of an unstable, infinitesimal disturbance (supercritical problem), possibly to a state of stable equilibrium; (ii) for values of the wave-number and Reynolds number for which no unstable infinitesimal disturbance exists, to follow the decay of a finite disturbance from a possible state of unstable equilibrium down to zero amplitude (subcritical problem). In case (ii) the existence of a state of unstable equilibrium implies the existence of unstable disturbances. Numerical calculations, which are not yet completed, are required to determine which of the two possible behaviours arises in plane Poiseuille flow, in a given range of wave-number and Reynolds number.It is suggested that the method of this paper (and of the generalization described by Part 2 by J. Watson) is valid for a wide range of Reynolds numbers and wave-numbers inside and outside the curve of neutral stability.


Sign in / Sign up

Export Citation Format

Share Document