On the non-linear mechanics of wave disturbances in stable and unstable parallel flows Part 1. The basic behaviour in plane Poiseuille flow

1960 ◽  
Vol 9 (3) ◽  
pp. 353-370 ◽  
Author(s):  
J. T. Stuart

This paper considers the nature of a non-linear, two-dimensional solution of the Navier-Stokes equations when the rate of amplification of the disturbance, at a given wave-number and Reynolds number, is sufficiently small. Two types of problem arise: (i) to follow the growth of an unstable, infinitesimal disturbance (supercritical problem), possibly to a state of stable equilibrium; (ii) for values of the wave-number and Reynolds number for which no unstable infinitesimal disturbance exists, to follow the decay of a finite disturbance from a possible state of unstable equilibrium down to zero amplitude (subcritical problem). In case (ii) the existence of a state of unstable equilibrium implies the existence of unstable disturbances. Numerical calculations, which are not yet completed, are required to determine which of the two possible behaviours arises in plane Poiseuille flow, in a given range of wave-number and Reynolds number.It is suggested that the method of this paper (and of the generalization described by Part 2 by J. Watson) is valid for a wide range of Reynolds numbers and wave-numbers inside and outside the curve of neutral stability.

1968 ◽  
Vol 34 (1) ◽  
pp. 177-205 ◽  
Author(s):  
Chester E. Grosch ◽  
Harold Salwen

The linear stability of plane Poiseuille flow has been studied both for the steady flow and also for the case of a pressure gradient that is periodic in time. The disturbance streamfunction is expanded in a complete set of functions that satisfy the boundary conditions. The expansion is truncated after N terms, yielding a set of N linear first-order differential equations for the time dependence of the expansion coefficients.For the steady flow, calculations have been carried out for both symmetric and antisymmetric disturbances over a wide range of Reynolds numbers and disturbance wave-numbers. The neutral stability curve, curves of constant amplification and decay rate, and the eigenfunctions for a number of cases have been calculated. The eigenvalue spectrum has also been examined in some detail. The first N eigenvalues are obtained from the numerical calculations, and an asymptotic formula for the higher eigenvalues has been derived. For those values of the wave-number and Reynolds number for which calculations were carried out by L. H. Thomas, there is excellent agreement in both the eigenvalues and the eigenfunctions with the results of Thomas.For the time-dependent flow, it was found, for small amplitudes of oscillation, that the modulation tended to stabilize the flow. If the flow was not completely stabilized then the growth rate of the disturbance was decreased. For a particular wave-number and Reynolds number there is an optimum amplitude and frequency of oscillation for which the degree of stabilization is a maximum. For a fixed amplitude and frequency of oscillation the wave-number of the disturbance and the Reynolds number has been varied and a neutral stability curve has been calculated. The neutral stability curve for the modulated flow shows a higher critical Reynolds number and a narrower band of unstable wave-numbers than that of the steady flow. The physical mechanism responsible for this stabiIization appears to be an interference between the shear wave generated by the modulation and the disturbance.For large amplitudes, the modulation destabilizes the flow. Growth rates of the modulated flow as much as an order of magnitude greater than that of the steady unmodulated flow have been found.


2019 ◽  
Vol 880 ◽  
pp. 478-496 ◽  
Author(s):  
Shengqi Zhang ◽  
Zhenhua Xia ◽  
Yipeng Shi ◽  
Shiyi Chen

Spanwise rotating plane Poiseuille flow (RPPF) is one of the canonical flow problems to study the effect of system rotation on wall-bounded shear flows and has been studied a lot in the past. In the present work, a two-dimensional-three-component (2D/3C) model for RPPF is introduced and it is shown that the present model is equivalent to a thermal convection problem with unit Prandtl number. For low Reynolds number cases, the model can be used to study the stability behaviour of the roll cells. It is found that the neutral stability curves, critical eigensolutions and critical streamfunctions of RPPF at different rotation numbers ($Ro$) almost collapse with the help of a rescaling with a newly defined Rayleigh number $Ra$ and channel height $H$. Analytic expressions for the critical Reynolds number and critical wavenumber at different $Ro$ can be obtained. For a turbulent state with high Reynolds number, the 2D/3C model for RPPF is self-sustained even without extra excitations. Simulation results also show that the profiles of mean streamwise velocity and Reynolds shear stress from the 2D/3C model share the same linear laws as the fully three-dimensional cases, although differences on the intercepts can be observed. The contours of streamwise velocity fluctuations behave like plumes in the linear law region. We also provide an explanation to the linear mean velocity profiles observed at high rotation numbers.


1974 ◽  
Vol 63 (4) ◽  
pp. 765-771 ◽  
Author(s):  
W. D. George ◽  
J. D. Hellums ◽  
B. Martin

Finite-amplitude disturbances in plane Poiseuille flow are studied by a method involving Fourier expansion with numerical solution of the resulting partial differential equations in the coefficient functions. A number of solutions are developed which extend to relatively long times so that asymptotic stability or instability can be established with a degree of confidence. The amplitude for neutral stability is established for a fixed wavenumber for two values of the Reynolds number. Details of the neutral velocity fluctuation are presented. These and earlier results are expressed in terms of the asymptotic amplitude and compared with results obtained by prior workers. The results indicate that the expansion methods used by prior workers may be valid only for amplitudes considerably smaller than 0·01.


1969 ◽  
Vol 38 (2) ◽  
pp. 401-414 ◽  
Author(s):  
E. H. Dowell

A theoretical study of plane Poiseuille flow is made using the full non-linear Navier-Stokes equations. The mathematical technique employed is to use a Fourier decomposition in the streamwise spatial variable, a Galerkin expansion in the lateral variable and numerical integration with respect to time. By retaining the non-linear terms, the limit cycle oscillations of an unstable (in a linear sense) flow are obtained. A brief investigation of the possibility of instability due to large (non-linear) disturbances is also made. The results are negative for the cases examined. Comparisons with results previously obtained by others from linear theory illustrate the accuracy and efficacy of the method.


2016 ◽  
Vol 791 ◽  
pp. 97-121 ◽  
Author(s):  
L. J. Dempsey ◽  
K. Deguchi ◽  
P. Hall ◽  
A. G. Walton

Strongly nonlinear three-dimensional interactions between a roll–streak structure and a Tollmien–Schlichting wave in plane Poiseuille flow are considered in this study. Equations governing the interaction at high Reynolds number originally derived by Bennett et al. (J. Fluid Mech., vol. 223, 1991, pp. 475–495) are solved numerically. Travelling wave states bifurcating from the lower branch linear neutral point are tracked to finite amplitudes, where they are observed to localize in the spanwise direction. The nature of the localization is analysed in detail near the relevant spanwise locations, revealing the presence of a singularity which slowly develops in the governing interaction equations as the amplitude of the motion is increased. Comparisons with the full Navier–Stokes equations demonstrate that the finite Reynolds number solutions gradually approach the numerical asymptotic solutions with increasing Reynolds number.


Author(s):  
Carlos Marchi ◽  
Cosmo D. Santiago ◽  
Carlos Alberto Rezende de Carvalho Junior

Abstract The incompressible steady-state fluid flow inside a lid-driven square cavity was simulated using the mass conservation and Navier-Stokes equations. This system of equations is solved for Reynolds numbers of up to 10,000 to the accuracy of the computational machine round-off error. The computational model used was the second-order accurate finite volume method. A stable solution is obtained using the iterative multigrid methodology with 8192 × 8192 volumes, while degree-10 interpolation and Richardson extrapolation were used to reduce the discretization error. The solution vector comprised five entries of velocities, pressure, and location. For comparison purposes, 65 different variables of interest were chosen, such as velocity profile, its extremum values and location, extremum values and location of the stream function. The discretization error for each variable of interest was estimated using two types of estimators and their apparent order of accuracy. The variations of the 11 selected variables are shown across 38 Reynolds number values between 0.0001 and 10,000. In this study, we provide a more accurate determination of the Reynolds number value at which the upper secondary vortex appears. The results of this study were compared with those of several other studies in the literature. The current solution methodology was observed to produce the most accurate solution till date for a wide range of Reynolds numbers.


2001 ◽  
Author(s):  
Hidesada Kanda

Abstract For plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) the critical Reynolds number increases as the contraction ratio in the inlet section increases, and (iii) the minimum critical Reynolds number is obtained when the contraction ratio is the smallest or one, and there is no-shaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum critical Reynolds number is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow.


When two parallel plates move normal to each other with a slow time-dependent speed, the velocity field developed in the intervening film of fluid is approximately that of plane Poiseuille flow, except that the magnitude of the velocity is dependent on time and on the coordinate parallel to the planes. This fact is intrinsic to Reynolds’ lubrication theory, and can be shown to follow from the Navier-Stokes equations when both the modified Reynolds number ( Re M ) and an aspect ratio ( δ ) are small. The modified Reynolds number is the product of δ and an actual Reynolds number ( Re ), which is based on the gap between the planes and on a characteristic velocity. The occurrence of flow instability and of turbulence in the film depend on Re . Typical values of Re , which are known to be required for the linear instability of plane Poiseuille flow, are of order 6000. This condition can be achieved, even if Re M is of order 1, provided that δ is of order 10 -4 . Such parameter values are typical of lubrication problems. The Orr-Sommerfeld equation governing flow instability is derived in this paper by use of the WKBJ technique, δ being the approximate small parameter to represent the small length-scale of the disturbance oscillations compared with the larger scale of the basic laminar flow. However, the coefficients in the Orr-Sommerfeld equation depend on slow space and time variables. Consequently the eigenrelation, derivable from the Orr-Sommerfeld equation and the associated boundary conditions, constitutes a nonlinear first-order partial differential equation for a phase function. This equation is solved by use of Charpit’s method for certain special forms of the time-dependent gap between the planes, followed by detailed numerical calculations. The relation between time-dependence and flow instability is delineated by the calculated results. In detail the nature of the instability can be described as follows. We consider a disturbance wave at or near a particular station, the initial distribution of amplitude being gaussian in the slow coordinate parallel to the planes. In the context of the Orr-Sommerfeld equation and its eigenrelation, the particular station implies an equivalent Reynolds number, while the initial distribution of the disturbance wave implies an equivalent wavenumber. As time increases, the disturbance wave can be considered to move in the instability diagram of equivalent wavenumber against Reynolds number, in the sense that these parameters are time- and space-dependent for the evolution of the disturbance-wave system. For our detailed calculations we use a quadratic approximation to the eigenrelation, an approximation which is quite accurate. If the initial distribution implies a point within the neutral curve, when the plates are squeezed together the equivalent wavenumber falls while the equivalent Reynolds number rises, and amplification takes place until the lower branch of the neutral curve is nearly crossed. If the plates are pulled apart (dilatation) the equivalent wavenumber rises, while the Reynolds number drops, and amplification takes place until the upper branch of the neutral curve has been just crossed. In the case of dilatation the transition from amplification to damping takes place more quickly than for the case of squeezing, in part due to the geometry of the neutral curve.


1981 ◽  
Vol 108 ◽  
pp. 101-125 ◽  
Author(s):  
Fredrick W. Cotton ◽  
Harold Salwen

Linear stability of rotating Hagen-Poiseuille flow has been investigated by an orthonormal expansion technique, confirming results by Pedley and Mackrodt and extending those results to higher values of the wavenumber |α|, the Reynolds number R, and the azimuthal index n. For |α| [gsim ] 2, the unstable region is pushed to considerably higher values of R and the angular velocity, Ω. In this region, the neutral stability curves obey a simple scaling, consistent with the unstable modes being centre modes. For n = 1, individual neutral stability curves have been calculated for several of the low-lying eigenmodes, revealing a complicated coupling between modes which manifests itself in kinks, cusps and loops in the neutral stability curves; points of degeneracy in the R, Ω plane; and branching behaviour on curves which circle a point of degeneracy.


Sign in / Sign up

Export Citation Format

Share Document