Variability of Hardening Phase Morphology and Topology in Pseudo-β-Titanium Alloys Quenched for β-Structure

Metallurgist ◽  
2021 ◽  
Author(s):  
N. A. Nochovnaya ◽  
A. A. Shiryaev ◽  
A. N. Andrianov ◽  
E. A. Davydova
2016 ◽  
Vol 687 ◽  
pp. 3-10 ◽  
Author(s):  
Maciej Motyka ◽  
Jan Sieniawski ◽  
Waldemar Ziaja

Phase constituent morphology in microstructure of two-phase α+β titanium alloys is determined by conditions of thermomechanical processing consisting of sequential heat treatment and plastic deformation operations. Results of previous research indicate that particularly solution treatment preceding plastic deformation significantly changes α-phase morphology and determines hot plasticity of titanium alloys. In the paper thermomechanical processing composed of β solution treatment and following hot forging of Ti-6Al-4V titanium alloy was analysed. Development of martensite plates during heating up and hot deformation was evaluated. Microscopic examinations revealed that elongated and deformed α-phase grains were fragmented and transformed into globular ones. Significant influence of martensitic transformation on elongation coefficient of α-phase grains after plastic deformation was confirmed. Based on results of elevated temperature tensile tests it was established that α-phase morphology in examined two-phase α+β titanium alloy, developed in the thermomechanical processing, can enhance their hot plasticity – especially in the range of low strain rates.


2009 ◽  
Vol 44 (2) ◽  
pp. 408-413 ◽  
Author(s):  
Shing-Hoa Wang ◽  
Hao-Hsun Lee ◽  
Chih-Yuan Chen ◽  
Jer-Ren Yang ◽  
Chin-Hai Kao

2000 ◽  
Vol 10 (PR6) ◽  
pp. Pr6-39-Pr6-39 ◽  
Author(s):  
E. Gautier ◽  
E. Laude ◽  
R. Sanguinetti-Ferrera ◽  
S. Denis

Metallurg ◽  
2021 ◽  
pp. 43-50
Author(s):  
N.A. Nochovnaya ◽  
A.A. Shiryaev ◽  
A.N. Andrianov ◽  
E.A. Davydova
Keyword(s):  

Author(s):  
N. E. Paton ◽  
D. de Fontaine ◽  
J. C. Williams

The electron microscope has been used to study the diffusionless β → β + ω transformation occurring in certain titanium alloys at low temperatures. Evidence for such a transformation was obtained by Cometto et al by means of x-ray diffraction and resistivity measurements on a Ti-Nb alloy. The present work shows that this type of transformation can occur in several Ti alloys of suitable composition, and some of the details of the transformation are elucidated by means of direct observation in the electron microscope.Thin foils were examined in a Philips EM-300 electron microscope equipped with a uniaxial tilt, liquid nitrogen cooled, cold stage and a high resolution dark field device. Selected area electron diffraction was used to identify the phases present and the ω-phase was imaged in dark field by using a (101)ω reflection. Alloys were water quenched from 950°C, thinned, and mounted between copper grids to minimize temperature gradients in the foil.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
G. Das ◽  
R. E. Omlor

Fiber reinforced titanium alloys hold immense potential for applications in the aerospace industry. However, chemical reaction between the fibers and the titanium alloys at fabrication temperatures leads to the formation of brittle reaction products which limits their development. In the present study, coated SiC fibers have been used to evaluate the effects of surface coating on the reaction zone in the SiC/IMI829 system.IMI829 (Ti-5.5A1-3.5Sn-3.0Zr-0.3Mo-1Nb-0.3Si), a near alpha alloy, in the form of PREP powder (-35 mesh), was used a茸 the matrix. CVD grown AVCO SCS-6 SiC fibers were used as discontinuous reinforcements. These fibers of 142μm diameter contained an overlayer with high Si/C ratio on top of an amorphous carbon layer, the thickness of the coating being ∽ 1μm. SCS-6 fibers, broken into ∽ 2mm lengths, were mixed with IMI829 powder (representing < 0.1vol%) and the mixture was consolidated by HIP'ing at 871°C/0. 28GPa/4h.


Author(s):  
E. Sukedai ◽  
M. Shimoda ◽  
A. Fujita ◽  
H. Nishizawa ◽  
H. Hashimoto

ω-phase particles formed in β-titanium alloys (bcc structure) act important roles to their mechanical properties such as ductility and hardness. About the ductility, fine ω-phase particles in β–titanium alloys improve the ductility, because ω-phase crystals becomes nucleation sites of α-phase and it is well known that (β+α) duplex alloys have higher ductility. In the present study, the formation sites and the formation mechanism of ω-phase crystals due to external stress and aging are investigated using the conventional and high resolution electron microscopy.A β-titanium alloy (Til5Mo5Zr) was supplied by Kobe Steel Co., and a single crystal was prepared by a zone refining method. Plates with {110} surface were cut from the crystal and were pressured hydrostatically, and stressed by rolling and tensile testing. Specimens for aging with tensile stress were also prepared from Ti20Mo polycrystals. TEM specimens from these specimens were prepared by a twin-jet electron-polishing machine. A JEM 4000EX electron microscope operated at 400k V was used for taking dark field and HREM images.


Sign in / Sign up

Export Citation Format

Share Document