A Parametric Model for a Priori Uncertainty in Coincidence Processing for Resonant Gravitational Antenna Output

2005 ◽  
Vol 48 (9) ◽  
pp. 843-847
Author(s):  
A. V. Gusev
2020 ◽  
pp. 65-72
Author(s):  
V. V. Savchenko ◽  
A. V. Savchenko

This paper is devoted to the presence of distortions in a speech signal transmitted over a communication channel to a biometric system during voice-based remote identification. We propose to preliminary correct the frequency spectrum of the received signal based on the pre-distortion principle. Taking into account a priori uncertainty, a new information indicator of speech signal distortions and a method for measuring it in conditions of small samples of observations are proposed. An example of fast practical implementation of the method based on a parametric spectral analysis algorithm is considered. Experimental results of our approach are provided for three different versions of communication channel. It is shown that the usage of the proposed method makes it possible to transform the initially distorted speech signal into compliance on the registered voice template by using acceptable information discrimination criterion. It is demonstrated that our approach may be used in existing biometric systems and technologies of speaker identification.


1999 ◽  
Vol 53 (9-10) ◽  
pp. 1-10
Author(s):  
V. A. Omel'chenko ◽  
V. V. Balabanov ◽  
B. M. Bezruk ◽  
Yu. N. Goloborod'ko

Author(s):  
Iryna Kononova

The article evaluates the reliability indicators of telecommunication system equipment, which can be represented by multi-mode objects of continuous and episodic use with a time reserve operating under conditions of a priori uncertainty. Particular attention is paid to consideration of the process of functioning of the system with a replenished time reserve. The telecommunication system includes an object represented by one structural element and used in different modes of operation. In each mode, the object can be used continuously or episodically (the object performs tasks that occur at random times), herewith only a certain part of its equipment is operating. The restoration of the facility's operation in each mode is based on the "quick" recovery scheme ("quick" recovery means that the repair time is much less than the average working time of the element between failures). Also, some cases of the transition of an object from one mode to another are considered, and the control system operates according to the method of sequential control of parameters. In this case, the system, after waiting mode, begins to analyze the first parameter of the monitored complex, then the second and so on. After analyzing the parameters, the system enters the waiting mode. These calculated ratios allow for a comprehensive assessment of the reliability of telecommunication equipment, taking into account the totality of the main factors that significantly affect the reliability of the equipment in real conditions of operation, make it possible to solve important practical problems which arise from the improvement of existing equipment and development of existing equipment.


Author(s):  
M. E. Shevchenko ◽  
A. V. Gorovoy ◽  
S. N. Solovyov

The paper considers the spatial filtering methods of signals with spectrum overlapping under conditions of a priori uncertainty of the directions of arrival from radio sources. The estimates of the directions of signals arrival obtained by ESPRIT or MUSIC are used in order to build a spatial filter. It is shown that when using ESPRIT, unlike MUSIC, an additional calculations of filter coefficients based on estimates of the directions of signals arrival are not required, and the quadrature components of the signals are formed simultaneously with estimates of the direction of their arrival. The probability of error performances of minimum shift keying signals which were divided by spatial filtering on the basis of ESPRIT and MUSIC using seven-element circular and angular antenna arrays are given.


2018 ◽  
Author(s):  
Anne Boynard ◽  
Daniel Hurtmans ◽  
Katerina Garane ◽  
Florence Goutail ◽  
Juliette Hadji-Lazaro ◽  
...  

Abstract. This paper assesses the quality of IASI/Metop-A (IASI-A) and IASI/Metop-B (IASI-B) ozone (O3) products (total and partial O3 columns) retrieved with the Fast Optimal Retrievals on Layers for IASI Ozone (FORLI-O3) v20151001 software for nine years (2008–2017) through an extensive inter-comparison and validation exercise using independent observations (satellite, ground-based and ozonesonde). IASI-A and IASI-B Total O3 Columns (TOCs) are generally consistent, with a global mean difference less than 0.3 % for both day- and nighttime measurements, IASI-A being slightly higher than IASI-B. A global difference less than 2.4 % is found for the tropospheric (TROPO) O3 column product (IASI-A being lower than IASI-B), which is partly due to a temporary issue related to IASI-A viewing angle in 2015. Our validation shows that IASI-A and IASI-B TOCs are consistent with GOME-2, Dobson, Brewer and SAOZ retrieved ones, with global mean differences in the range 0.1–2 % depending on the instruments. The IASI-A and ground-based TOC comparison for the period 2008–July 2017 shows good long-term stability (negative trends within 3 % decade−1). The comparison results between IASI-A and IASI-B against smoothed ozonesonde partial O3 columns vary in altitude and latitude, with maximum standard deviation for the 300–150 hPa column (20–40 %) due to strong ozone variability and a priori uncertainty. The worst agreement with the ozonesondes and with UV-vis retrieved TOC [satellite and ground] is found at the southern high latitudes. Compared to ozonesonde data, IASI-A and IASI-B O3 products overestimate the O3 abundance in the stratosphere (up to 20 % for the 150–25 hPa column) and underestimates the O3 abundance in the troposphere (within 10 % for the mid-latitudes and ~ 18 % for the tropics). Based on the period 2011–2016, non-significant drift is found for the northern hemispheric tropospheric columns while a small drift prevails for the period before 2011.


Author(s):  
N. Seube

Abstract. This paper introduce a new method for validating the precision of an airborne or a mobile LiDAR data set. The proposed method is based on the knowledge of an a Combined Standard Measurement Uncertainty (CSMU) model which describes LiDAR point covariance matrix and thus uncertainty ellipsoid. The model we consider includes timing errors and most importantly the incidence of the LiDAR beam. After describing the relationship between the beam incidence and other variable uncertainty (especially attitude uncertainty), we show that we can construct a CSMU model giving the covariance of each oint as a function of the relative geometry between the LiDAR beam and the point normal. The validation method we propose consist in comparing the CSMU model (predictive a priori uncertainty) t the Standard Deviation Alog the Surface Normal (SDASN), for all set of quasi planr segments of the point cloud. Whenever the a posteriori (i.e; observed by the SDASN) level of uncertainty is greater than a priori (i.e; expected) level of uncertainty, the point fails the validation test. We illustrate this approach on a dataset acquired by a Microdrones mdLiDAR1000 system.


Sign in / Sign up

Export Citation Format

Share Document