Candidate genes and molecular markers associated with brown planthopper (Nilaparvata lugens Stål) resistance in rice cultivar Rathu Heenati

2018 ◽  
Vol 38 (7) ◽  
Author(s):  
Lucia Kusumawati ◽  
Pantharika Chumwong ◽  
Watchareewan Jamboonsri ◽  
Samart Wanchana ◽  
Jonaliza L. Siangliw ◽  
...  
2010 ◽  
Vol 46 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Sanju Kumari ◽  
Jennifer M. Sheba ◽  
Maheshwaran Marappan ◽  
Shanmugasunderam Ponnuswamy ◽  
Suresh Seetharaman ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Prem N. Sharma ◽  
Naoki Mori ◽  
Shigeo Takumi ◽  
Chiharu Nakamura

Rice productivity is greatly affected by various biotic and abiotic stresses. Insect-pests are one of the major bioticconstraints to cause significant losses in rice production. Brown planthopper (BPH), Nilaparvata lugens Stål, isthe most serious insect-pest of rice in Asia where most of the world rice is produced. Controlling insects usingchemicals is already proven detrimental not only to environment but also to human health. Integrated PestManagement (IPM) is the best approach to control insect pests. Host plant resistance is the principal componentof IPM along with biological, cultural and physical methods. Use of varietal resistance is the best option to controlBPH. Many BPH resistant rice varieties with natural BPH resistance have been developed and widely used againstBPH. However, frequent breakdown of monogenic resistance by new BPH biotypes has been a serious threat tocontrol BPH. To overcome such difficulty in the use of monogenic resistance, development of durable resistanceis needed as the sustainable means to control BPH. To develop durable resistance, pyramiding of BPH resistancegenes and quantitative trait loci (QTLs), through marker-assisted method, is needed. For this, many BPH resistancegenes and QTLs have already been identified and mapped on rice chromosomes. This article reviews identification,mapping and pyramiding toward successful cloning of BPH resistance genes/QTLs and provides the basis/guidelines to work on natural insect resistance genes using molecular markers in Nepal.DOI: http://dx.doi.org/10.3126/njst.v15i1.12032Nepal Journal of Science and TechnologyVol. 15, No.1 (2014) 145-156


2011 ◽  
Vol 124 (3) ◽  
pp. 495-504 ◽  
Author(s):  
Khin Khin Marlar Myint ◽  
Daisuke Fujita ◽  
Masaya Matsumura ◽  
Tomohiro Sonoda ◽  
Atsushi Yoshimura ◽  
...  

2016 ◽  
Vol 14 (2) ◽  
pp. 261-269
Author(s):  
Nguyễn Thị Kim Liên ◽  
Nguyễn Huy Hoàng ◽  
Lê Bắc Việt ◽  
Phan Thị Bích Thu ◽  
Nguyễn Huy Chung

Brown plant hopper (Nilaparvata lugens Stal.) is the one of dangerous pests for rice that were reported in most of rice growing countries. Twenty seven BPH resistance genes have been detected in cultivated and wild rice. However, each resistance gene is able to resist with only strain or certain biotype. Besides, many studies indicated that the toxicity of BPH strains tend to change and loss the resistance of rice lines. The breeding of rice varieties that resist to many BPH biotypes is being the breeders towards. With helping of the development of molecular markers and genetic engineering, the breeders are hopping to identify the molecular markers that linked tightly with BPH resistance genes and develop the rice varieties can gather many resistance genes in a well genomic platform. In this study, we assessed the resistance of rice lines of Vietnam and imported rice lines. The resistance was ditermined by using assessement method in the galvanized box and molecular markers linkage with resistance genes (Bph1, bph2, Bph3, Bph9 and Bph17). The results showed that there was a high affinity between the two methods with 70.59% and 86.27% of lines that have the resistance (respectively). Among of 51 surveyed rice lines, 44 lines (86.27%) were determined to have at least one marker linkage with resistance genes. 19 lines (37.25%) harbored two or three markers linkage with resistance genes. These lines will be a good genetic resource for screening and breeding the resistant rice varieties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sengottayan Senthil-Nathan

AbstractThe elevated CO2 (eCO2) has positive response on plant growth and negative response on insect pests. As a contemplation, the feeding pattern of the brown plant hopper, Nilaparvata lugens Stål on susceptible and resistant rice cultivars and their growth rates exposed to eCO2 conditions were analyzed. The eCO2 treatment showed significant differences in percentage of emergence and rice biomass that were consistent across the rice cultivars, when compared to the ambient conditions. Similarly, increase in carbon and decrese in nitrogen ratio of leaves and alterations in defensive peroxidase enzyme levels were observed, but was non-linear among the cultivars tested. Lower survivorship and nutritional indices of N. lugens were observed in conditions of eCO2 levels over ambient conditions. Results were nonlinear in manner. We conclude that the plant carbon accumulation increased due to eCO2, causing physiological changes that decreased nitrogen content. Similarly, eCO2 increased insect feeding, and did alter other variables such as their biology or reproduction.


Sign in / Sign up

Export Citation Format

Share Document