scholarly journals Analysis of expression profiles of selected genes associated with the regenerative property and the receptivity to gene transfer during somatic embryogenesis in Triticum aestivum L.

2013 ◽  
Vol 40 (10) ◽  
pp. 5883-5906 ◽  
Author(s):  
Fabienne Delporte ◽  
Yordan Muhovski ◽  
Anna Pretova ◽  
Bernard Watillon
Plant Science ◽  
1996 ◽  
Vol 117 (1-2) ◽  
pp. 139-149 ◽  
Author(s):  
Fabienne Corre ◽  
Yves Henry ◽  
André Rode ◽  
Caroline Hartmann

2021 ◽  
Vol 23 (1) ◽  
pp. 469
Author(s):  
Kai Tong ◽  
Xinyang Wu ◽  
Long He ◽  
Shiyou Qiu ◽  
Shuang Liu ◽  
...  

Hyperosmolality and various other stimuli can trigger an increase in cytoplasmic-free calcium concentration ([Ca2+]cyt). Members of the Arabidopsis thaliana (L.) reduced hyperosmolality-gated calcium-permeable channels (OSCA) gene family are reported to be involved in sensing extracellular changes to trigger hyperosmolality-induced [Ca2+]cyt increases and controlling stomatal closure during immune signaling. Wheat (Triticum aestivum L.) is a very important food crop, but there are few studies of its OSCA gene family members. In this study, 42 OSCA members were identified in the wheat genome, and phylogenetic analysis can divide them into four clades. The members of each clade have similar gene structures, conserved motifs, and domains. TaOSCA genes were predicted to be regulated by cis-acting elements such as STRE, MBS, DRE1, ABRE, etc. Quantitative PCR results showed that they have different expression patterns in different tissues. The expression profiles of 15 selected TaOSCAs were examined after PEG (polyethylene glycol), NaCl, and ABA (abscisic acid) treatment. All 15 TaOSCA members responded to PEG treatment, while TaOSCA12/-39 responded simultaneously to PEG and ABA. This study informs research into the biological function and evolution of TaOSCA and lays the foundation for the breeding and genetic improvement of wheat.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 696
Author(s):  
Datong Liu ◽  
Jing Sun ◽  
Dongmei Zhu ◽  
Guofeng Lyu ◽  
Chunmei Zhang ◽  
...  

Late embryogenesis-abundant (LEA) genes play important roles in plant growth and development, especially the cellular dehydration tolerance during seed maturation. In order to comprehensively understand the roles of LEA family members in wheat, we carried out a series of analyses based on the latest genome sequence of the bread wheat Chinese Spring. 121 Triticum aestivum L. LEA (TaLEA) genes, classified as 8 groups, were identified and characterized. TaLEA genes are distributed in all chromosomes, most of them with a low number of introns (≤3). Expression profiles showed that most TaLEA genes expressed specifically in grains. By qRT-PCR analysis, we confirmed that 12 genes among them showed high expression levels during late stage grain maturation in two spring wheat cultivars, Yangmai16 and Yangmai15. For most genes, the peak of expression appeared earlier in Yangmai16. Statistical analysis indicated that expression level of 8 genes in Yangmai 16 were significantly higher than Yangmai 15 at 25 days after anthesis. Taken together, our results provide more knowledge for future functional analysis and potential utilization of TaLEA genes in wheat breeding.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 653
Author(s):  
Oscar Carey-Fung ◽  
Jesse T. Beasley ◽  
Alexander A. T. Johnson

Effective maintenance of plant iron (Fe) homoeostasis relies on a network of transcription factors (TFs) that respond to environmental conditions and regulate Fe uptake, translocation, and storage. The iron-related transcription factor 3 (IRO3), as well as haemerythrin motif-containing really interesting new gene (RING) protein and zinc finger protein (HRZ), are major regulators of Fe homeostasis in diploid species like Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa L.), but remain uncharacterised in hexaploid bread wheat (Triticum aestivum L.). In this study, we have identified, annotated, and characterised three TaIRO3 homoeologs and six TaHRZ1 and TaHRZ2 homoeologs in the bread wheat genome. Protein analysis revealed that TaIRO3 and TaHRZ proteins contain functionally conserved domains for DNA-binding, dimerisation, Fe binding, or polyubiquitination, and phylogenetic analysis revealed clustering of TaIRO3 and TaHRZ proteins with other monocot IRO3 and HRZ proteins, respectively. Quantitative reverse-transcription PCR analysis revealed that all TaIRO3 and TaHRZ homoeologs have unique tissue expression profiles and are upregulated in shoot tissues in response to Fe deficiency. After 24 h of Fe deficiency, the expression of TaHRZ homoeologs was upregulated, while the expression of TaIRO3 homoeologs was unchanged, suggesting that TaHRZ functions upstream of TaIRO3 in the wheat Fe homeostasis TF network.


Sign in / Sign up

Export Citation Format

Share Document