Cloning of human cord blood-mesenchymal stem cells for isolation of enriched cell population of higher proliferation and differentiation potential

2020 ◽  
Vol 47 (5) ◽  
pp. 3963-3972 ◽  
Author(s):  
Zeinab Demerdash ◽  
Hanan El Baz ◽  
Noha Ali ◽  
Faten Mahmoud ◽  
Salwa Mohamed ◽  
...  
2008 ◽  
Vol 177 (7) ◽  
pp. 701-711 ◽  
Author(s):  
Viranuj Sueblinvong ◽  
Roberto Loi ◽  
Philip L. Eisenhauer ◽  
Ira M. Bernstein ◽  
Benjamin T. Suratt ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5081-5081
Author(s):  
Ching-Tien Peng

Abstract 5081 Introduction Idiopathic severe aplastic anemia (SAA), characterized by failure of hematopoiesis, is rare and potentially life-threatening to children. However, the pathogenesis has not been completely understood, and insufficiency in the hematopoietic microenvironment can be an important factor. Mesenchymal stem cells (MSCs) play an important role in maintaining bone marrow microenvironment. Therefore, we aimed at the intrinsic defects of bone marrow MSCs derived from SAA children. Materials and Methods Bone marrow MSCs were obtained from 5 SAA children and 5 controls. The morphology, immunophenotyping, proliferative capacity and differentiation potential of MSCs from SAA children were determined and compared with those of MSCs from controls. Results In vitro, MSCs of SAA and control group shared a similar spindle-shaped morphology. Both revealed a consistent immunophenotypic profile which was negative for CD45, CD14 and CD34, and positive for CD105, CD73, and CD44. However, SAA MSCs had slower expansion rate and smaller cumulative population doubling from passage 4 to 6 (1.83± 1.21 vs 3.36± 0.87; p = 0.046), indicating lower proliferative capacity. Besides, only 3 of 5 cultures of SAA group retained the ability to continue expansion till 80%-90% confluent cell layer beyond passage 6, suggesting earlier senescence of SAA MSCs. After osteogenic induction, SAA MSCs showed lower alkaline phosphatase activity (1.46± 0.04 vs 2.27± 0.32; p = 0.013), less intense von Kossa staining and lower gene expression of core binding factora1 (0.0015± 0.0005 vs 0.0056± 0.0017; p = 0.013). Following adipogenic induction, SAA MSCs showed less intense Oil red O staining (0.86± 0.22 vs 1.73± 0.42; p = 0.013) and lower lipoproteinlipase expression (0.0105± 0.0074 vs 0.0527± 0.0254; p = 0.013).The results of real time-PCR analysis for the assessment of lineage-specific genes were consistent with the findings of histochemical stains, and both indicated that SAA MSCs had poor osteogenic and adipogenic potential. Conclusions In this study, we demonstrated that bone marrow MSCs from children with SAA had poor potential of proliferation and differentiation. These alterations in MSCs may contribute to the failure of hematopoiesis, and lead to the development of the disease. Further studies are needed to elucidate the relationship between MSCs and SAA. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 114 (10) ◽  
pp. 735-747 ◽  
Author(s):  
Marilyne Levy ◽  
Lan Huang ◽  
Elisa Rossi ◽  
Adeline Blandinières ◽  
Dominique Israel-Biet ◽  
...  

SummaryPulmonary vasodilators and prostacyclin therapy in particular, have markedly improved the outcome of patients with pulmonary hypertension (PH). Endothelial dysfunction is a key feature of PH, and we previously reported that treprostinil therapy increases number and proliferative potential of endothelial colony forming cells (ECFC) isolated from PH patients’ blood. In the present study, the objective was to determine how treprostinil contributes to the proangiogenic functions of ECFC. We examined the effect of treprostinil on ECFC obtained from cord blood in terms of colony numbers, proliferative and clonogenic properties in vitro, as well as in vivo vasculogenic properties. Surprisingly, treprostinil inhibited viability of cultured ECFC but did not modify their clonogenic properties or the endothelial differentiation potential from cord blood stem cells. Treprostinil treatment significantly increased the vessel-forming ability of ECFC combined with mesenchymal stem cells (MSC) in Matrigel implanted in nude mice. In vitro, ECFC proliferation was stimulated by conditioned media from treprostinil-pretreated MSC, and this effect was inhibited either by the use of VEGF-A blocking antibodies or siRNA VEGF-A in MSC. Silencing VEGF-A gene in MSC also blocked the pro-angiogenic effect of treprostinil in vivo. In conclusion, increased VEGF-A produced by MSC can account for the increased vessel formation observed during treprostinil treatment. The clinical relevance of these data was confirmed by the high level of VEGF-A detected in plasma from patients with paediatric PH who had been treated with treprostinil. Moreover, our results suggest that VEGF-A level in patients could be a surrogate biomarker of treprostinil efficacy.


2010 ◽  
Vol 65 (6) ◽  
pp. 565-572 ◽  
Author(s):  
Kwan-Chul Tark ◽  
Jong-Won Hong ◽  
Young-Soo Kim ◽  
Seung-Boem Hahn ◽  
Won-Jai Lee ◽  
...  

Hematology ◽  
2012 ◽  
Vol 17 (6) ◽  
pp. 334-340 ◽  
Author(s):  
Arezoo Oodi ◽  
Mehrdad Noruzinia ◽  
Mehryar Habibi Roudkenar ◽  
Mahin Nikougoftar ◽  
Mohamad Soleiman Soltanpour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document