Expression of P16 cell cycle inhibitor in human cord blood CD34+ expanded cells following co-culture with bone marrow-derived mesenchymal stem cells

Hematology ◽  
2012 ◽  
Vol 17 (6) ◽  
pp. 334-340 ◽  
Author(s):  
Arezoo Oodi ◽  
Mehrdad Noruzinia ◽  
Mehryar Habibi Roudkenar ◽  
Mahin Nikougoftar ◽  
Mohamad Soleiman Soltanpour ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2569-2569
Author(s):  
Robb Friedman ◽  
Monica Betancur ◽  
Hande Tuncer ◽  
Laurent Boissel ◽  
Curtis Cetrulo ◽  
...  

Abstract Umbilical cord blood (UCB) is a viable source of hematopoietic stem cells for transplantation of children and adults undergoing treatment for hematological malignancies. However only 4% of adults 70kg and over have a UCB unit available which contains the widely accepted minimum cell dose of 1.5x107 mononuclear cells per kilogram. Co-transplantation of hematopoietic stem cells with mesenchymal stem cells may enhance engraftment and therefore decrease transplant-related morbidity and mortality from delayed leukocyte recovery associated with a low pre-transplant cell dose. Umbilical cord matrix (UCM) cells, found in the Wharton’s Jelly, were easily and reliably extracted from minced pieces of cord by culture in RPMI + 20% fetal bovine serum at 37° and 5% humidified CO2. UCM expand best in 20% FBS but can also be expanded in human serum, autologous serum, and X-VIVO10. Small (1–3mm) minced pieces of umbilical cord can be cyropreserved at the time of delivery in 10% DMSO solution. UCM cells exhibit a fibroblast morphology and express markers common to mesenchymal stem cells: CD73 (SH3), CD105 (SH2), CD 29, CD44, CD49b, CD117, CD166, STRO-1 and HLA-DR. UCM are negative for CD14, CD 19, CD34, and CD45. Morphology and cell surface marker expression is stable after greater than fifteen passages. UCM cells grown in culture were shown to produce more GM-CSF and G-CSF than similar numbers of adult bone marrow mesenchymal stem cells, GM-CSF 178 pg/mL versus 77 pg/mL and G-CSF 82.6 pg/mL versus 7.9 pg/mL. NOD/SCID mice treated with anti-NK 1.1 antibodies and irradiated with 350 cGy were injected with suboptimal (1x104) numbers of cord blood CD34+ cells with and without 1x106 autologous UCM cells, extracted from the same umbilical cord as the cord blood CD34+ cells. Bone marrow was harvested at six weeks post transplant from both femurs and tibias and peripheral blood obtained via cardiac puncture. The percentage of human CD45+ cells in the bone marrow and the peripheral blood was assessed by flow cytometry. NOD/SCID mice transplanted with 1x104 cord blood CD34+ cells alone had 3.0% human CD45+ cell engraftment in the bone marrow and 3.6% human CD45+ cells in the peripheral blood, while NOD/SCID mice transplanted with 1x104 CD34+ cells and 1x106 UCM cells had an average of 27.3% human CD45+ cell engraftment in the bone marrow and 3.9% human CD45+ cells in the peripheral blood. These results indicate a trend towards improved engraftment in vivo with co-transplantation of suboptimal numbers of umbilical cord blood CD34+ cells and autologous umbilical cord matrix cells versus transplantation of suboptimal numbers of umbilical cord CD34+ cells alone.


Stem Cells ◽  
2007 ◽  
Vol 25 (4) ◽  
pp. 1003-1012 ◽  
Author(s):  
Enca Martin-Rendon ◽  
Sarah J.M. Hale ◽  
Dacey Ryan ◽  
Dilair Baban ◽  
Sinead P. Forde ◽  
...  

2018 ◽  
Vol 70 (3) ◽  
pp. 433-441
Author(s):  
Fatemeh Mohammadali ◽  
Saeid Abroun ◽  
Amir Atashi

Cord blood (CB) is a rich source of hematopoietic stem cells (HSC). It has been used successfully to treat a variety of hematological and non-hematological disorders. Beside the advantages of CB, its main disadvantages are the limited number of stem cells available for transplantation and delayed engraftment. Identifying strategies to enhance expansion and self-renewal of HSCs can improve transplantation efficiency. The aim of this study was to examine different culture conditions on ex vivo expansion and homeobox protein Hox-B4 gene (HOXB4) expression in cord blood CD34+ stem cells. Human cord blood CD34+ HSC were cultured in serum-free medium supplemented with cytokines with and without a feeder layer in normoxia (21% O2) and mild hypoxia (5% O2). At the end of 7 days of culture, the highest number of total nucleated cells (TNC), CD34+ cells, colony forming units (CFUs) and HOXB4 mRNA were observed in a co-culture of HSC with a bone marrow mesenchymal stem cell(MSC) feeder layer at 5% O2.We concluded that the combination of bone marrow (BM)-MSC and mild hypoxia (5% O2) not only improved HSC expansion but also enhanced HOXB4 gene expression as a self-renewal marker of HSC, and better mimicked the niche microenvironment conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Huafang Wang ◽  
Xiaohang Ye ◽  
Haowen Xiao ◽  
Ni Zhu ◽  
Cong Wei ◽  
...  

Protein tyrosine phosphatases (PTPs) act as key regulators in various cellular processes such as proliferation, differentiation, and migration. Our previous research demonstrated that non-receptor-typed PTP21 (PTPN21), a member of the PTP family, played a critical role in the proliferation, cell cycle, and chemosensitivity of acute lymphoblastic leukemia cells. However, the role of PTPN21 in the bone marrow microenvironment has not yet been elucidated. In the study, we explored the effects of PTPN21 on human bone marrow-derived mesenchymal stem cells (BM-MSCs) via lentiviral-mediated overexpression and knock-down of PTPN21 in vitro. Overexpressing PTPN21 in BM-MSCs inhibited the proliferation through arresting cell cycle at the G0 phase but rendered them a higher osteogenic and adipogenic differentiation potential. In addition, overexpressing PTPN21 in BM-MSCs increased their senescence levels through upregulation of P21 and P53 and dramatically changed the levels of crosstalk with their typical target cells including immunocytes, tumor cells, and vascular endothelial cells. BM-MSCs overexpressing PTPN21 had an impaired immunosuppressive function and an increased capacity of recruiting tumor cells and vascular endothelial cells in a chemotaxis transwell coculture system. Collectively, our data suggested that PTPN21 acted as a pleiotropic factor in modulating the function of human BM-MSCs.


Sign in / Sign up

Export Citation Format

Share Document