Dynamical Effects of Mars on Asteroidal Dust Particles

2007 ◽  
Vol 102 (1-4) ◽  
pp. 199-203 ◽  
Author(s):  
Ashley J. Espy ◽  
Stanley F. Dermott ◽  
Thomas J. J. Kehoe
1996 ◽  
Vol 150 ◽  
pp. 155-158 ◽  
Author(s):  
Sumita Jayaraman ◽  
Stanley F. Dermott

AbstractThe Earth's resonant ring is populated primarily by asteroidal dust particles because cometary particles have higher Poynting-Robertson drag rates and the Earth's resonances are not strong enough to trap them (Gomes, 1995). It has been shown that asteroidal particles in a limited size range from 5 — 30μm are responsible for the observed trailing/leading flux asymmetry caused by the trailing dust cloud embedded in the ring (Jayaraman and Dermott 1995). The magnitude of the flux asymmetry is a direct function of the area of dust in the ring, which in turn depends upon the number of asteroidal particles in the zodiacal cloud. Using a dynamical model of the ring and the background zodiacal cloud and estimating the surface area of dust needed in the ring to match the observed flux asymmetry in the 25 micron COBE waveband, we have calculated the fraction of asteroidal dust in the zodiacal cloud as a function of p, the slope of the size-frequency distribution of particles.


2004 ◽  
Vol 202 ◽  
pp. 184-186
Author(s):  
Keith Grogan ◽  
S.F. Dermott ◽  
T.J.J. Kehoe

In this paper we demonstrate how the action of secular resonances near the inner edge of the asteroid belt strongly effects the inclinations and eccentricities of asteroidal dust particles, such that they lose the orbital characteristics of their parent body and are dispersed into the zodiacal background. As a consequence, it may not be possible to relate the distribution of interplanetary material at 1 AU to given asteroidal or cometary sources with the level of confidence previously imagined.


1996 ◽  
Vol 150 ◽  
pp. 159-162
Author(s):  
Sumita Jayaraman ◽  
Stanley F. Dermott ◽  
Michael Werner

AbstractThe Space Infrared Telescope Facility (SIRTF) is planned for launch by NASA in 2001 in a heliocentric orbit at 1.01 AU The spacecraft will drift away from the Earth slowly, reaching a distance of 0.3 AU behind the Earth at the end of its 2.5 year mission. This implies that SIRTF will spiral through the Earth's resonant dust ring (Wright et al., 1995) and, in particular, that it will traverse the dust cloud in the ring that trails the Earth in its orbit. We have used a dynamical model of the ring (Dermott et al., 1994) followed by simulation of the SIRTF orbit to predict the variations in the zodiacal thermal emission due to the trailing dust cloud as seen by SIRTF. Because the dust ring is inclined to the ecliptic, the latitude of peak flux of the trailing cloud will have yearly oscillations about the ecliptic. The amplitude of the oscillations will increase as SIRTF approaches the cloud, reaching a maximum of 20 during the mission. The magnitude of the flux variations can be as high as 4 – 5% or 2–3 MJy/Sr, SIRTF's measurements of these effects will allow us to model the number density and thermal characteristics of asteroidal dust particles near the Earth.


Author(s):  
Ashley J. Espy ◽  
Stanley F. Dermott ◽  
Thomas J. J. Kehoe

1994 ◽  
Vol 160 ◽  
pp. 127-142 ◽  
Author(s):  
S. F. Dermott ◽  
D. D. Durda ◽  
B. A. S. Gustafson ◽  
S. Jayaraman ◽  
J. C. Liou ◽  
...  

One of the outstanding problems in solar system science is the source of the particles that constitute the zodiacal cloud. The zodiacal dust bands discovered by IRAS have a pivotal role in this debate because, without doubt, they are the small, tail end products of asteroidal collisions. Geometrical arguments are probably the strongest and the plane of symmetry of the dust bands places their source firmly in the asteroid belt. A cometary source, Comet Encke for example, could exist at the distance of the mainbelt, but the dynamics of cometary orbits makes the formation of cometary dust bands impossible, unless, of course, there is a significant (comparable in volume to the asteroidal families) source of comets interior to the orbit of Jupiter with low (asteroidal) orbital eccentricities. We have suggested that the dust bands are associated with the prominent asteroidal families. The link with the Themis and Koronis families is good but the link with Eos remains to be proved. We show here by detailed modeling that even though the filtered infrared flux in the 25μm waveband associated with the dust bands is only ~1% of the total signal, this is only the “tip of the iceberg” and that asteroidal dust associated with the bands constitutes ~10% of the zodiacal cloud. This result, plus the observed size-frequency distribution of mainbelt asteroids and the observed ratio of the number of family to non-family asteroids allows us to estimate that asteroidal dust accounts for about one third of the zodiacal cloud. The discovery of the “leading-trailing” asymmetry of the zodiacal cloud in the IRAS data and our interpretation of this asymmetry in terms of a ring of asteroidal particles in resonant lock with the Earth is important for two reasons. (1) The existence of the ring strongly suggests that large (diameter ≥ 12μm) asteroidal particles (or particles with low orbital eccentricities) are transported to the inner solar system by drag forces. (2) The observed ratio of the trailing-leading asymmetry allows an independent estimate of the contribution of asteroidal particles to the zodiacal cloud. These new results have important implications for the source of the interplanetary dust particles (IDPs) collected at the Earth. Because asteroidal particles constitute about one third of the zodiacal cloud and are transported to the inner solar system by drag forces, gravitational focussing by the Earth that results in the preferential capture of particles from orbits with low inclinations and low eccentricities and the possible “funneling” effect of the ring itself, imply that nearly all of the unmelted IDPs collected at the Earth are asteroidal.


1984 ◽  
Vol 75 ◽  
pp. 597
Author(s):  
E. Grün ◽  
G.E. Morfill ◽  
T.V. Johnson ◽  
G.H. Schwehm

ABSTRACTSaturn's broad E ring, the narrow G ring and the structured and apparently time variable F ring(s), contain many micron and sub-micron sized particles, which make up the “visible” component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. It is suggested that the extent of the E ring and the braided, kinky structure of certain portions of the F rings as well as possible time variations are a result of plasma induced electromagnetic perturbations and drag forces. The G ring, in this scenario, requires some form of shepherding and should be akin to the F ring in structure. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 102to 104years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.


Author(s):  
J. R. Porter ◽  
J. I. Goldstein ◽  
D. B. Williams

Alloy scrap metal is increasingly being used in electric arc furnace (EAF) steelmaking and the alloying elements are also found in the resulting dust. A comprehensive characterization program of EAF dust has been undertaken in collaboration with the steel industry and AISI. Samples have been collected from the furnaces of 28 steel companies representing the broad spectrum of industry practice. The program aims to develop an understanding of the mechanisms of formation so that procedures to recover residual elements or recycle the dust can be established. The multi-phase, multi-component dust particles are amenable to individual particle analysis using modern analytical electron microscopy (AEM) methods.Particles are ultrasonically dispersed and subsequently supported on carbon coated formvar films on berylium grids for microscopy. The specimens require careful treatment to prevent agglomeration during preparation which occurs as a result of the combined effects of the fine particle size and particle magnetism. A number of approaches to inhibit agglomeration are currently being evaluated including dispersal in easily sublimable organic solids and size fractioning by centrifugation.


Author(s):  
E. C. Buck ◽  
N. L. Dietz ◽  
J. K. Bates

Operations at former weapons processing facilities in the U. S. have resulted in a large volume of radionuclidecontaminated soils and residues. In an effort to improve remediation strategies and meet environmental regulations, radionuclide-bearing particles in contaminant soils from Fernald in Ohio and the Rocky Flats Plant (RFP) in Colorado have been characterized by electron microscopy. The object of these studies was to determine the form of the contaminant radionuclide, so that it properties could be established [1]. Physical separation and radiochemical analysis determined that uranium contamination at Fernald was not present exclusively in any one size/density fraction [2]. The uranium-contamination resulted from aqueous and solid product spills, air-borne dust particles, and from the operation of an incinerator on site. At RFP the contamination was from the incineration of Pu-bearing materials. Further analysis by x-ray absorption spectroscopy indicated that the majority of the uranium was in the 6+ oxidation state [3].


Sign in / Sign up

Export Citation Format

Share Document