scholarly journals Estimating the Asteroidal Component of the Zodiacal Cloud using the Earth's Resonant Ring

1996 ◽  
Vol 150 ◽  
pp. 155-158 ◽  
Author(s):  
Sumita Jayaraman ◽  
Stanley F. Dermott

AbstractThe Earth's resonant ring is populated primarily by asteroidal dust particles because cometary particles have higher Poynting-Robertson drag rates and the Earth's resonances are not strong enough to trap them (Gomes, 1995). It has been shown that asteroidal particles in a limited size range from 5 — 30μm are responsible for the observed trailing/leading flux asymmetry caused by the trailing dust cloud embedded in the ring (Jayaraman and Dermott 1995). The magnitude of the flux asymmetry is a direct function of the area of dust in the ring, which in turn depends upon the number of asteroidal particles in the zodiacal cloud. Using a dynamical model of the ring and the background zodiacal cloud and estimating the surface area of dust needed in the ring to match the observed flux asymmetry in the 25 micron COBE waveband, we have calculated the fraction of asteroidal dust in the zodiacal cloud as a function of p, the slope of the size-frequency distribution of particles.

1994 ◽  
Vol 160 ◽  
pp. 127-142 ◽  
Author(s):  
S. F. Dermott ◽  
D. D. Durda ◽  
B. A. S. Gustafson ◽  
S. Jayaraman ◽  
J. C. Liou ◽  
...  

One of the outstanding problems in solar system science is the source of the particles that constitute the zodiacal cloud. The zodiacal dust bands discovered by IRAS have a pivotal role in this debate because, without doubt, they are the small, tail end products of asteroidal collisions. Geometrical arguments are probably the strongest and the plane of symmetry of the dust bands places their source firmly in the asteroid belt. A cometary source, Comet Encke for example, could exist at the distance of the mainbelt, but the dynamics of cometary orbits makes the formation of cometary dust bands impossible, unless, of course, there is a significant (comparable in volume to the asteroidal families) source of comets interior to the orbit of Jupiter with low (asteroidal) orbital eccentricities. We have suggested that the dust bands are associated with the prominent asteroidal families. The link with the Themis and Koronis families is good but the link with Eos remains to be proved. We show here by detailed modeling that even though the filtered infrared flux in the 25μm waveband associated with the dust bands is only ~1% of the total signal, this is only the “tip of the iceberg” and that asteroidal dust associated with the bands constitutes ~10% of the zodiacal cloud. This result, plus the observed size-frequency distribution of mainbelt asteroids and the observed ratio of the number of family to non-family asteroids allows us to estimate that asteroidal dust accounts for about one third of the zodiacal cloud. The discovery of the “leading-trailing” asymmetry of the zodiacal cloud in the IRAS data and our interpretation of this asymmetry in terms of a ring of asteroidal particles in resonant lock with the Earth is important for two reasons. (1) The existence of the ring strongly suggests that large (diameter ≥ 12μm) asteroidal particles (or particles with low orbital eccentricities) are transported to the inner solar system by drag forces. (2) The observed ratio of the trailing-leading asymmetry allows an independent estimate of the contribution of asteroidal particles to the zodiacal cloud. These new results have important implications for the source of the interplanetary dust particles (IDPs) collected at the Earth. Because asteroidal particles constitute about one third of the zodiacal cloud and are transported to the inner solar system by drag forces, gravitational focussing by the Earth that results in the preferential capture of particles from orbits with low inclinations and low eccentricities and the possible “funneling” effect of the ring itself, imply that nearly all of the unmelted IDPs collected at the Earth are asteroidal.


1996 ◽  
Vol 150 ◽  
pp. 159-162
Author(s):  
Sumita Jayaraman ◽  
Stanley F. Dermott ◽  
Michael Werner

AbstractThe Space Infrared Telescope Facility (SIRTF) is planned for launch by NASA in 2001 in a heliocentric orbit at 1.01 AU The spacecraft will drift away from the Earth slowly, reaching a distance of 0.3 AU behind the Earth at the end of its 2.5 year mission. This implies that SIRTF will spiral through the Earth's resonant dust ring (Wright et al., 1995) and, in particular, that it will traverse the dust cloud in the ring that trails the Earth in its orbit. We have used a dynamical model of the ring (Dermott et al., 1994) followed by simulation of the SIRTF orbit to predict the variations in the zodiacal thermal emission due to the trailing dust cloud as seen by SIRTF. Because the dust ring is inclined to the ecliptic, the latitude of peak flux of the trailing cloud will have yearly oscillations about the ecliptic. The amplitude of the oscillations will increase as SIRTF approaches the cloud, reaching a maximum of 20 during the mission. The magnitude of the flux variations can be as high as 4 – 5% or 2–3 MJy/Sr, SIRTF's measurements of these effects will allow us to model the number density and thermal characteristics of asteroidal dust particles near the Earth.


2019 ◽  
Vol 630 ◽  
pp. A20 ◽  
Author(s):  
A. C. Levasseur-Regourd ◽  
J.-B. Renard ◽  
E. Hadamcik ◽  
J. Lasue ◽  
I. Bertini ◽  
...  

Context. The dust-brightness phase curves that have been measured by the OSIRIS cameras on board the Rosetta spacecraft within the coma of comet 67P/Churyumov-Gerasimenko (67P) present a remarkable flattened u-shape. Aims. Our goal is to compare these phase curves with those of tentatively analog dust samples to assess the key dust properties that might induce this shape. Methods. Light-scattering measurements have been made with the PROGRA2 instrument in the laboratory and in microgravity conditions on samples of different physical properties and compositions that are likely to be representative of cometary dust particles. Results. We find that the brightness phase curves of a series of interplanetary dust analogs that have been recently developed (to fit the polarimetric properties of the inner zodiacal cloud and their changes with heliocentric distance) are quite comparable to those of 67P. Key dust properties seem to be related to the composition and the porosity. Conclusions. We conclude that the shape of the brightness phase curves of 67P has to be related to the presence of a significant amount of organic compounds (at least 50% in mass) and of fluffy aggregates (of a size range of 10–200 μm). We also confirm similarities between the dust particles of this Jupiter-family comet and the particles within the inner zodiacal cloud.


2011 ◽  
Vol 4 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Ritwik Dasgupta

The facts that small hatchlings emerged from small eggs laid under high predation levels prevailing at the lower altitudes of distribution of this species in Darjeeling while larger hatchlings emerged from larger eggs laid under lower levels of predation at higher altitudes, show that predation is not selected for large egg and initial hatchling size in this salamandrid species. Metamorphic size was small under high predation rates because this species relied on crypsis for evading predators. Egg and hatchling size are related inversely to levels of primary productivity and zooplankton abundance in lentic habitats. Hatchling sizes are related positively to egg size and size frequency distribution of zooplankton. Small egg and small hatchling size have been selected for at the lower altitudes of distribution of this salamandrid in Darjeeling because predation rates increased in step with improvement in trophic conditions at the lower altitudes.


2016 ◽  
Author(s):  
Shelly J. Wernette ◽  
◽  
Scott Evans ◽  
Christine Hall ◽  
Mary L. Droser ◽  
...  

1985 ◽  
Vol 85 ◽  
pp. 223-226
Author(s):  
K. Weiss-Wrana ◽  
R.H. Giese ◽  
R.H. Zerull

AbstractThe investigations of light scattering by larger meteoritic and terrestrial single grains (size range 20 μm to 120 μm ) demonstrate that the scattering properties of irregularly shaped dark opaque particles with very rough surfaces resemble the characteristic features of the empirical scattering function as derived from measurements of the zodiacal light. Purely transparent or translucent irregularly shaped particles show a quite different scattering behaviour. Furthermore irregular and multicomponent fluffy particles in the size range of a few microns were modelled by microwave analog measurements in order to explain positive and negative polarization of the light scattered by cometary dust grains.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Maurizio Pajola ◽  
Alice Lucchetti ◽  
Lara Senter ◽  
Gabriele Cremonese

We study the size frequency distribution of the blocks located in the deeply fractured, geologically active Enceladus South Polar Terrain with the aim to suggest their formative mechanisms. Through the Cassini ISS images, we identify ~17,000 blocks with sizes ranging from ~25 m to 366 m, and located at different distances from the Damascus, Baghdad and Cairo Sulci. On all counts and for both Damascus and Baghdad cases, the power-law fitting curve has an index that is similar to the one obtained on the deeply fractured, actively sublimating Hathor cliff on comet 67P/Churyumov-Gerasimenko, where several non-dislodged blocks are observed. This suggests that as for 67P, sublimation and surface stresses favor similar fractures development in the Enceladus icy matrix, hence resulting in comparable block disaggregation. A steeper power-law index for Cairo counts may suggest a higher degree of fragmentation, which could be the result of localized, stronger tectonic disruption of lithospheric ice. Eventually, we show that the smallest blocks identified are located from tens of m to 20–25 km from the Sulci fissures, while the largest blocks are found closer to the tiger stripes. This result supports the ejection hypothesis mechanism as the possible source of blocks.


2020 ◽  
Vol 500 (3) ◽  
pp. 2979-2985
Author(s):  
Xiaodong Liu ◽  
Jürgen Schmidt

ABSTRACT It is expected since the early 1970s that tenuous dust rings are formed by grains ejected from the Martian moons Phobos and Deimos by impacts of hypervelocity interplanetary projectiles. In this paper, we perform direct numerical integrations of a large number of dust particles originating from Phobos and Deimos. In the numerical simulations, the most relevant forces acting on the dust are included: Martian gravity with spherical harmonics up to fifth degree and fifth order, gravitational perturbations from the Sun, Phobos, and Deimos, solar radiation pressure, as well as the Poynting–Robertson drag. In order to obtain the ring configuration, simulation results of various grain sizes ranging from submicrometres to 100 μm are averaged over a specified initial mass distribution of ejecta. We find that for the Phobos ring grains smaller than about 2 μm are dominant; while the Deimos ring is dominated by dust in the size range of about 5–20 μm. The asymmetries, number densities, and geometric optical depths of the rings are quantified from simulations. The results are compared with the upper limits of the optical depth inferred from Hubble observations. We compare to previous work and discuss the uncertainties of the models.


Sign in / Sign up

Export Citation Format

Share Document