About Abnormal Grain Growth in Joints Obtained by Friction Stir Welding

2015 ◽  
Vol 57 (1-2) ◽  
pp. 40-47 ◽  
Author(s):  
S. Yu. Mironov
Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1607
Author(s):  
Amir Hossein Baghdadi ◽  
Zainuddin Sajuri ◽  
Mohd Zaidi Omar ◽  
Armin Rajabi

Friction stir welding (FSW) is an alternative method to join aluminum (Al) alloys in a solid-state condition. However, the coarsening or dissolution of precipitation hardening phases in the welding zone causes strength reduction or softening behavior in the welded area of age-hardened Al alloys. Therefore, this research aimed to improve the mechanical properties of an FSW Al–Mg–Si alloy via post-weld heat treatment (PWHT) and the possibility of controlling the abnormal grain growth (AGG) using different welding parameters. FSW was performed with different rotational and travel speeds, and T6 heat treatment was carried out on the FSW samples as the PWHT. The results showed a decrease in the strength of the FSW samples compared with that of the base material (BM) due to the dissolution of precipitation hardening particles in the heat-affected zone. However, the emergence of AGG in the microstructure after the T6-PWHT was identified as the potential event in the microstructure of the PWHT samples. It is found that the AGG of the microstructure in similar joints of Al6061(T6) was governed by the welding parameters. The results proved that PWHT was able to increase the tensile properties of the welded samples to values comparable to that of Al6061(T6)-BM. The increased mechanical properties of the FSW joints were attributed to a proper PWHT that resulted in a homogeneous distribution of the precipitation hardening phases in the welding zones.


2005 ◽  
Vol 486-487 ◽  
pp. 249-252 ◽  
Author(s):  
Chang Yong Lee ◽  
Won Bae Lee ◽  
Yun Mo Yeon ◽  
Seung Boo Jung

Friction stir welding of dissimilar formed Mg alloys(AZ31/AZ91) was successfully carried out at the limited welding conditions. In a sound joint, SZ was mainly consisted of AZ31 Mg alloy which was located the retreating side. Dynamic recrystallization and grain growth occurred and β intermetallic compounds of AZ 91 Mg alloy was not observed in SZ. BM had a higher hardness than that of the weld zone. The fracture location was not weld zone but BM of the AZ91 Mg alloy in tensile test.


2016 ◽  
Vol 879 ◽  
pp. 2249-2254
Author(s):  
Diana Yuzbekova ◽  
Vladislav Kulitskiy ◽  
Anna Mogucheva ◽  
Rustam Kaibyshev

Influence of friction stir welding (FSW) on microstructure of an Al-4.57Mg-0.35Mn-0.2Sc-0.09Zr (wt. pct.) alloy was studied. Following parameters of FSW were used: the rotation speeds of 500, 650 and 800 rpm, the traverse speed of 75 mm/min and the tilt angle of 2.5°. Defect-free welds were obtained using all these parameters. FSW leads to the formation of fully recrystallized microstructures with average grain sizes less 2 μm and a moderate dislocation density of ~1013 m–2 in the stir zone. No evidence for abnormal grain growth was found in the heat affected zone of the weld. The nanoscale Al3(Sc,Zr) dispersoids coarsened to 21 nm but retained coherent interfaces and cube-cube orientation relationship with the matrix.


2019 ◽  
Author(s):  
A. Kalinenko ◽  
I. Vysotskiy ◽  
S. Malopheyev ◽  
I. Zuiko ◽  
V. Torganchuk ◽  
...  

PRICM ◽  
2013 ◽  
pp. 1091-1099 ◽  
Author(s):  
Wesley A. Tayon ◽  
Marcia S. Domack ◽  
Eric K. Hoffman ◽  
Stephen J. Hales

Sign in / Sign up

Export Citation Format

Share Document