scholarly journals Pre-strain rolling as an effective tool for suppression of abnormal grain growth in friction-stir welded 6061 aluminum alloy

2018 ◽  
Vol 733 ◽  
pp. 39-42 ◽  
Author(s):  
I. Vysotskiy ◽  
S. Malopheyev ◽  
S. Mironov ◽  
R. Kaibyshev
2013 ◽  
Vol 44 (3) ◽  
pp. 1153-1157 ◽  
Author(s):  
Sergey Mironov ◽  
Kunitaka Masaki ◽  
Yutaka S. Sato ◽  
Hiroyuki Kokawa

2017 ◽  
Vol 17 (2) ◽  
pp. 29-40 ◽  
Author(s):  
M. A. Tashkandi ◽  
J. A. Al-Jarrah ◽  
M. Ibrahim

AbstractThe main aim of this investigation is to produce a welding joint of higher strength than that of base metals. Composite welded joints were produced by friction stir welding process. 6061 aluminum alloy was used as a base metal and alumina particles added to welding zone to form metal matrix composites. The volume fraction of alumina particles incorporated in this study were 2, 4, 6, 8 and 10 vol% were added on both sides of welding line. Also, the alumina particles were pre-mixed with magnesium particles prior being added to the welding zone. Magnesium particles were used to enhance the bonding between the alumina particles and the matrix of 6061 aluminum alloy. Friction stir welded joints containing alumina particles were successfully obtained and it was observed that the strength of these joints was better than that of base metal. Experimental results showed that incorporating volume fraction of alumina particles up to 6 vol% into the welding zone led to higher strength of the composite welded joints as compared to plain welded joints.


2018 ◽  
Vol 385 ◽  
pp. 355-358 ◽  
Author(s):  
Sergey Mironov ◽  
Sergey Malopheyev ◽  
Igor Vysotskiy ◽  
Daria Zhemchuzhnikova ◽  
Rustam Kaibyshev

In this work, the effect of pre-strain cold rolling on thermal stability of friction-stir welded AA6061-T6 alloy was studied. The pre-strain rolling was found to be very effective in suppression of abnormal grain growth during standard post-weld T6 heat treatment. It was also shown that the efficiency of this approach essentially depends on rolling path and the rolling along welding direction was the most effective rolling schedule.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1607
Author(s):  
Amir Hossein Baghdadi ◽  
Zainuddin Sajuri ◽  
Mohd Zaidi Omar ◽  
Armin Rajabi

Friction stir welding (FSW) is an alternative method to join aluminum (Al) alloys in a solid-state condition. However, the coarsening or dissolution of precipitation hardening phases in the welding zone causes strength reduction or softening behavior in the welded area of age-hardened Al alloys. Therefore, this research aimed to improve the mechanical properties of an FSW Al–Mg–Si alloy via post-weld heat treatment (PWHT) and the possibility of controlling the abnormal grain growth (AGG) using different welding parameters. FSW was performed with different rotational and travel speeds, and T6 heat treatment was carried out on the FSW samples as the PWHT. The results showed a decrease in the strength of the FSW samples compared with that of the base material (BM) due to the dissolution of precipitation hardening particles in the heat-affected zone. However, the emergence of AGG in the microstructure after the T6-PWHT was identified as the potential event in the microstructure of the PWHT samples. It is found that the AGG of the microstructure in similar joints of Al6061(T6) was governed by the welding parameters. The results proved that PWHT was able to increase the tensile properties of the welded samples to values comparable to that of Al6061(T6)-BM. The increased mechanical properties of the FSW joints were attributed to a proper PWHT that resulted in a homogeneous distribution of the precipitation hardening phases in the welding zones.


1998 ◽  
Vol 4 (S2) ◽  
pp. 530-531
Author(s):  
R. D. Flores ◽  
L. E. Murr ◽  
E. A. Trillo

Although friction-stir welding has been developing as a viable industrial joining process over the past decade, only little attention has been given to the elucidation of associated microstructures. We have recently produced welds of copper to 6061 aluminum alloy using the technique illustrated in Fig. 1. In this process, a steel tool rod (0.6 cm diameter) or head-pin (HP) traverses the seam of 0.64 cm thick plates of copper butted against 6061-T6 aluminum at a rate (T in Fig. 1) of 1 mm/s; and rotating at a speed (R in Fig. 1) of 650 rpm (Fig. 1). A rather remarkable welding of these two materials results at temperatures measured to be around 400°C for 6061-T6 aluminum welded to itself. Consequently, the metals are stirred into one another by extreme plastic deformation which universally seems to involve dynamic recrystallization in the actual weld zone. There is no melting.


Sign in / Sign up

Export Citation Format

Share Document