Evolution of Microstructure in the Thermomechanically Affected Zone of Welded Joints of Medium-Carbon Steels in the Process of Rotary Friction Welding

Author(s):  
E. Yu. Priymak ◽  
I. L. Yakovlev ◽  
A. S. Atamashkin ◽  
A. V. Stepanchukova
2019 ◽  
Vol 120 (11) ◽  
pp. 1091-1096 ◽  
Author(s):  
E. Y. Priymak ◽  
I. L. Yakovleva ◽  
N. A. Tereshchenko ◽  
A. V. Stepanchukova ◽  
A. N. Morozova

Author(s):  
A. S. Atamashkin ◽  
E. Yu. Priymak ◽  
N. V. Firsova

The paper presents an analysis of the mechanical behavior of friction samples of welded joints from steels 30G2 (36 Mn 5) and 40 KhN (40Ni Cr 6), made by rotary friction welding (RFW). The influence of various temperature conditions of postweld tempering on the mechanical properties and deformation behavior during uniaxial tensile testing is analyzed. Vulnerabilities where crack nucleation and propagation occurred in specimens with a welded joint were identified. It was found that with this combination of steels, postweld tempering of the welded joint contributes to a decrease in the integral strength characteristics under conditions of static tension along with a significant decrease in the relative longitudinal deformation of the tested samples.


Author(s):  
F. A. Khalid ◽  
D. V. Edmonds

The austenite/pearlite growth interface in a model alloy steel (Fe-1 lMn-0.8C nominal wt%) is being investigated. In this particular alloy pearlite nodules can be grown isothermally in austenite that remains stable at room temperature, thus facilitating examination of the transformation interfaces. This study presents preliminary results of thin foil TEM of the austenite/pearlite interface, as part of a programme of aimed at studying alloy carbide precipitation reactions at this interface which can result in significant strengthening of microalloyed low- and medium- carbon steels L Similar studies of interface structure, made on a partially decomposed high- Mn austenitic alloy, have been reported recently.The experimental alloys were made as 50 g argon arc melts using high purity materials and homogenised. Samples were hot- rolled, swaged and machined to 3mm diameter rod, solution treated at 1300 °C for 1 hr and WQ. Specimens were then solutionised between 1250 °C and 1000 °C and isothermally transformed between 610 °C and 550 °C for 10-18 hr and WQ.


Alloy Digest ◽  
1996 ◽  
Vol 45 (1) ◽  

Abstract INCO WELD C Electrode is a stainless-alloy electrode especially designed for shielded-metal-arc welding of a broad range of materials, including many difficult-to-weld compositions. It can be used in stainless steels, mild and medium-carbon steels,and spring steels. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on joining. Filing Code: SS-632. Producer or source: Inco Alloys International Inc.


2021 ◽  
Vol 410 ◽  
pp. 299-305
Author(s):  
Artem S. Atamashkin ◽  
Elena Y. Priymak ◽  
Elena A. Kuzmina

In this work, pipe billets with a diameter of 73 mm and a wall thickness of 9 mm from steels 32G2 and 40KhN are friction welded with an aim to optimize the process parameters. The friction pressure, the forging pressure and the length of the fusion varied. After the implementation of various welding modes, tensile tests and metallographic studies were carried out. The optimal welding parameters have been established, which make it possible to obtain tensile strength at the level of the 32G2 base metal. The study results of the microstructure and SEM fractographs after the optimal welding mode are presented.


Sign in / Sign up

Export Citation Format

Share Document