Fault diagnosis method of rolling bearings based on VMD and MDSVM

Author(s):  
MeiYing Qiao ◽  
XiaXia Tang ◽  
YuXiang Liu ◽  
ShuHao Yan
2021 ◽  
pp. 107413
Author(s):  
Dawei Gao ◽  
Yongsheng Zhu ◽  
Zhijun Ren ◽  
Ke Yan ◽  
Wei Kang

Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 584
Author(s):  
Shuting Wan ◽  
Bo Peng

Early fault information of rolling bearings is weak and often submerged by background noise, easily leading to misdiagnosis or missed diagnosis. In order to solve this issue, the present paper puts forward a fault diagnosis method on the basis of adaptive frequency window (AFW) and sparse coding shrinkage (SCS). The proposed method is based on the idea of determining the resonance frequency band, extracting the narrowband signal, and envelope demodulating the extracted signal. Firstly, the paper introduces frequency window, which can slip on the frequency axis and extract the frequency band. Secondly, the double time domain feature entropy is proposed to evaluate the strength of periodic components in signal. The location of the optimal frequency window covering the resonance band caused by bearing fault is determined adaptively by this entropy index and the shifting/expanding frequency window. Thirdly, the signal corresponding to the optimal frequency window is reconstructed, and it is further filtered by the sparse coding shrinkage algorithm to highlight the impact feature and reduce the residue noise. Fourthly, the de-noised signal is demodulated by envelope operation, and the corresponding envelope spectrum is calculated. Finally, the bearing failure type can be judged by comparing the frequency corresponding to the spectral lines with larger amplitude in the envelope spectrum and the fault characteristic frequency. Two bearing vibration signals are applied to validate the proposed method. The analysis results illustrate that this method can extract more failure information and highlight the early failure feature. The data files of Case Western Reserve University for different operation conditions are used, and the proposed approach achieves a diagnostic success rate of 83.3%, superior to that of the AFW method, SCS method, and Fast Kurtogram method. The method presented in this paper can be used as a supplement to the early fault diagnosis method of rolling bearings.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 290 ◽  
Author(s):  
Xiong Gan ◽  
Hong Lu ◽  
Guangyou Yang

This paper proposes a new method named composite multiscale fluctuation dispersion entropy (CMFDE), which measures the complexity of time series under different scale factors and synthesizes the information of multiple coarse-grained sequences. A simulation validates that CMFDE could improve the stability of entropy estimation. Meanwhile, a fault recognition method for rolling bearings based on CMFDE, the minimum redundancy maximum relevancy (mRMR) method, and the k nearest neighbor (kNN) classifier (CMFDE-mRMR-kNN) is developed. For the CMFDE-mRMR-kNN method, the CMFDE method is introduced to extract the fault characteristics of the rolling bearings. Then, the sensitive features are obtained by utilizing the mRMR method. Finally, the kNN classifier is used to recognize the different conditions of the rolling bearings. The effectiveness of the proposed CMFDE-mRMR-kNN method is verified by analyzing the standard experimental dataset. The experimental results show that the proposed fault diagnosis method can effectively classify the conditions of rolling bearings.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 404 ◽  
Author(s):  
Wenlong Fu ◽  
Jiawen Tan ◽  
Yanhe Xu ◽  
Kai Wang ◽  
Tie Chen

Rolling bearings are a vital and widely used component in modern industry, relating to the production efficiency and remaining life of a device. An effective and robust fault diagnosis method for rolling bearings can reduce the downtime caused by unexpected failures. Thus, a novel fault diagnosis method for rolling bearings by fine-sorted dispersion entropy and mutation sine cosine algorithm and particle swarm optimization (SCA-PSO) optimized support vector machine (SVM) is presented to diagnose a fault of various sizes, locations and motor loads. Vibration signals collected from different types of faults are firstly decomposed by variational mode decomposition (VMD) into sets of intrinsic mode functions (IMFs), where the decomposing mode number K is determined by the central frequency observation method, thus, to weaken the non-stationarity of original signals. Later, the improved fine-sorted dispersion entropy (FSDE) is proposed to enhance the perception for relationship information between neighboring elements and then employed to construct the feature vectors of different fault samples. Afterward, a hybrid optimization strategy combining advantages of mutation operator, sine cosine algorithm and particle swarm optimization (MSCAPSO) is proposed to optimize the SVM model. The optimal SVM model is subsequently applied to realize the pattern recognition for different fault samples. The superiority of the proposed method is assessed through multiple contrastive experiments. Result analysis indicates that the proposed method achieves better precision and stability over some relevant methods, whereupon it is promising in the field of fault diagnosis for rolling bearings.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 680 ◽  
Author(s):  
Zhang ◽  
Zhou

This study presents a comprehensive fault diagnosis method for rolling bearings. The method includes two parts: the fault detection and the fault classification. In the stage of fault detection, a threshold based on refined composite multiscale dispersion entropy (RCMDE) at a local maximum scale is defined to judge the health state of rolling bearings. If the bearing is in fault, a generalized multi-scale feature extraction method is developed to fully extract fault information by combining fast ensemble empirical mode decomposition (FEEMD) and RCMDE. Firstly, the fault vibration signals are decomposed into a set of intrinsic mode functions (IMFs) by FEEMD. Secondly, the RCMDE value of multiple IMFs is calculated to generate a candidate feature pool. Then, the maximum-relevance and minimum-redundancy (mRMR) approach is employed to select the sensitive features from the candidate feature pool to construct the final feature vectors, and the final feature vectors are fed into random forest (RF) classifier to identify different fault working conditions. Finally, experiments and comparative research are carried out to verify the performance of the proposed method. The results show that the proposed method can detect faults effectively. Meanwhile, it has a more robust and excellent ability to identify different fault types and severity compared with other conventional approaches.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Shuang Zhou ◽  
Maohua Xiao ◽  
Petr Bartos ◽  
Martin Filip ◽  
Guosheng Geng

Rolling bearings play a pivotal role in rotating machinery. The remaining useful life prediction and fault diagnosis of bearings are crucial to condition-based maintenance. However, traditional data-driven methods usually require manual extraction of features, which needs rich signal processing theory as support and is difficult to control the efficiency. In this study, a bearing remaining life prediction and fault diagnosis method based on short-time Fourier transform (STFT) and convolutional neural network (CNN) has been proposed. First, the STFT was adopted to construct time-frequency maps of the unprocessed original vibration signals that can ensure the true and effective recovery of the fault characteristics in vibration signals. Then, the training time-frequency maps were used as an input of the CNN to train the network model. Finally, the time-frequency maps of testing signals were inputted into the network model to complete the life prediction or fault identification of rolling bearings. The rolling bearing life-cycle datasets from the Intelligent Management System were applied to verify the proposed life prediction method, showing that its accuracy reaches 99.45%, and the prediction effect is good. Multiple sets of validation experiments were conducted to verify the proposed fault diagnosis method with the open datasets from Case Western Reserve University. Results show that the proposed method can effectively identify the fault classification and the accuracy can reach 95.83%. The comparison with the fault diagnosis classification effects of backpropagation (BP) neural network, particle swarm optimization-BP, and genetic algorithm-BP further proves its superiority. The proposed method in this paper is proved to have strong ability of adaptive feature extraction, life prediction, and fault identification.


Sign in / Sign up

Export Citation Format

Share Document