scholarly journals Two-Level Transformer and Auxiliary Coherence Modeling for Improved Text Segmentation

2020 ◽  
Vol 34 (05) ◽  
pp. 7797-7804
Author(s):  
Goran Glavašš ◽  
Swapna Somasundaran

Breaking down the structure of long texts into semantically coherent segments makes the texts more readable and supports downstream applications like summarization and retrieval. Starting from an apparent link between text coherence and segmentation, we introduce a novel supervised model for text segmentation with simple but explicit coherence modeling. Our model – a neural architecture consisting of two hierarchically connected Transformer networks – is a multi-task learning model that couples the sentence-level segmentation objective with the coherence objective that differentiates correct sequences of sentences from corrupt ones. The proposed model, dubbed Coherence-Aware Text Segmentation (CATS), yields state-of-the-art segmentation performance on a collection of benchmark datasets. Furthermore, by coupling CATS with cross-lingual word embeddings, we demonstrate its effectiveness in zero-shot language transfer: it can successfully segment texts in languages unseen in training.

Author(s):  
Akshi Kumar ◽  
Victor Hugo C. Albuquerque

Sentiment analysis on social media relies on comprehending the natural language and using a robust machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. The cultural miscellanies, geographically limited trending topic hash-tags, access to aboriginal language keyboards, and conversational comfort in native language compound the linguistic challenges of sentiment analysis. This research evaluates the performance of cross-lingual contextual word embeddings and zero-shot transfer learning in projecting predictions from resource-rich English to resource-poor Hindi language. The cross-lingual XLM-RoBERTa classification model is trained and fine-tuned using the English language Benchmark SemEval 2017 dataset Task 4 A and subsequently zero-shot transfer learning is used to evaluate the classification model on two Hindi sentence-level sentiment analysis datasets, namely, IITP-Movie and IITP-Product review datasets. The proposed model compares favorably to state-of-the-art approaches and gives an effective solution to sentence-level (tweet-level) analysis of sentiments in a resource-poor scenario. The proposed model compares favorably to state-of-the-art approaches and achieves an average performance accuracy of 60.93 on both the Hindi datasets.


Author(s):  
Tham Vo

Recently, advanced techniques in deep learning such as recurrent neural network (GRU, LSTM and Bi-LSTM) and auto-encoding (attention-based transformer and BERT) have achieved great successes in multiple application domains including text summarization. Recent state-of-the-art encoding-based text summarization models such as BertSum, PreSum and DiscoBert have demonstrated significant improvements on extractive text summarization tasks. However, recent models still encounter common problems related to the language-specific dependency which requires the supports of the external NLP tools. Besides that, recent advanced text representation methods, such as BERT as the sentence-level textual encoder, also fail to fully capture the representation of a full-length document. To address these challenges, in this paper we proposed a novel s emantic-ware e mbedding approach for ex tractive text sum marization , called as: SE4ExSum. Our proposed SE4ExSum is an integration between the use of feature graph-of-words (FGOW) with BERT-based encoder for effectively learning the word/sentence-level representations of a given document. Then, the g raph c onvolutional n etwork (GCN) based encoder is applied to learn the global document's representation which is then used to facilitate the text summarization task. Extensive experiments on benchmark datasets show the effectiveness of our proposed model in comparing with recent state-of-the-art text summarization models.


2020 ◽  
Author(s):  
Andrey De Aguiar Salvi ◽  
Rodrigo Coelho Barros

Recent research on Convolutional Neural Networks focuses on how to create models with a reduced number of parameters and a smaller storage size while keeping the model’s ability to perform its task, allowing the use of the best CNN for automating tasks in limited devices, with reduced processing power, memory, or energy consumption constraints. There are many different approaches in the literature: removing parameters, reduction of the floating-point precision, creating smaller models that mimic larger models, neural architecture search (NAS), etc. With all those possibilities, it is challenging to say which approach provides a better trade-off between model reduction and performance, due to the difference between the approaches, their respective models, the benchmark datasets, or variations in training details. Therefore, this article contributes to the literature by comparing three state-of-the-art model compression approaches to reduce a well-known convolutional approach for object detection, namely YOLOv3. Our experimental analysis shows that it is possible to create a reduced version of YOLOv3 with 90% fewer parameters and still outperform the original model by pruning parameters. We also create models that require only 0.43% of the original model’s inference effort.


2020 ◽  
Vol 10 (11) ◽  
pp. 3712
Author(s):  
Dongjing Shan ◽  
Xiongwei Zhang ◽  
Wenhua Shi ◽  
Li Li

Regarding the sequence learning of neural networks, there exists a problem of how to capture long-term dependencies and alleviate the gradient vanishing phenomenon. To manage this problem, we proposed a neural network with random connections via a scheme of a neural architecture search. First, a dense network was designed and trained to construct a search space, and then another network was generated by random sampling in the space, whose skip connections could transmit information directly over multiple periods and capture long-term dependencies more efficiently. Moreover, we devised a novel cell structure that required less memory and computational power than the structures of long short-term memories (LSTMs), and finally, we performed a special initialization scheme on the cell parameters, which could permit unhindered gradient propagation on the time axis at the beginning of training. In the experiments, we evaluated four sequential tasks: adding, copying, frequency discrimination, and image classification; we also adopted several state-of-the-art methods for comparison. The experimental results demonstrated that our proposed model achieved the best performance.


2020 ◽  
Vol 32 (23) ◽  
pp. 17309-17320
Author(s):  
Rolandos Alexandros Potamias ◽  
Georgios Siolas ◽  
Andreas - Georgios Stafylopatis

AbstractFigurative language (FL) seems ubiquitous in all social media discussion forums and chats, posing extra challenges to sentiment analysis endeavors. Identification of FL schemas in short texts remains largely an unresolved issue in the broader field of natural language processing, mainly due to their contradictory and metaphorical meaning content. The main FL expression forms are sarcasm, irony and metaphor. In the present paper, we employ advanced deep learning methodologies to tackle the problem of identifying the aforementioned FL forms. Significantly extending our previous work (Potamias et al., in: International conference on engineering applications of neural networks, Springer, Berlin, pp 164–175, 2019), we propose a neural network methodology that builds on a recently proposed pre-trained transformer-based network architecture which is further enhanced with the employment and devise of a recurrent convolutional neural network. With this setup, data preprocessing is kept in minimum. The performance of the devised hybrid neural architecture is tested on four benchmark datasets, and contrasted with other relevant state-of-the-art methodologies and systems. Results demonstrate that the proposed methodology achieves state-of-the-art performance under all benchmark datasets, outperforming, even by a large margin, all other methodologies and published studies.


2022 ◽  
pp. 1-10
Author(s):  
Daniel Trevino-Sanchez ◽  
Vicente Alarcon-Aquino

The need to detect and classify objects correctly is a constant challenge, being able to recognize them at different scales and scenarios, sometimes cropped or badly lit is not an easy task. Convolutional neural networks (CNN) have become a widely applied technique since they are completely trainable and suitable to extract features. However, the growing number of convolutional neural networks applications constantly pushes their accuracy improvement. Initially, those improvements involved the use of large datasets, augmentation techniques, and complex algorithms. These methods may have a high computational cost. Nevertheless, feature extraction is known to be the heart of the problem. As a result, other approaches combine different technologies to extract better features to improve the accuracy without the need of more powerful hardware resources. In this paper, we propose a hybrid pooling method that incorporates multiresolution analysis within the CNN layers to reduce the feature map size without losing details. To prevent relevant information from losing during the downsampling process an existing pooling method is combined with wavelet transform technique, keeping those details "alive" and enriching other stages of the CNN. Achieving better quality characteristics improves CNN accuracy. To validate this study, ten pooling methods, including the proposed model, are tested using four benchmark datasets. The results are compared with four of the evaluated methods, which are also considered as the state-of-the-art.


2020 ◽  
Vol 34 (05) ◽  
pp. 9434-9441
Author(s):  
Zekun Yang ◽  
Juan Feng

Word embedding has become essential for natural language processing as it boosts empirical performances of various tasks. However, recent research discovers that gender bias is incorporated in neural word embeddings, and downstream tasks that rely on these biased word vectors also produce gender-biased results. While some word-embedding gender-debiasing methods have been developed, these methods mainly focus on reducing gender bias associated with gender direction and fail to reduce the gender bias presented in word embedding relations. In this paper, we design a causal and simple approach for mitigating gender bias in word vector relation by utilizing the statistical dependency between gender-definition word embeddings and gender-biased word embeddings. Our method attains state-of-the-art results on gender-debiasing tasks, lexical- and sentence-level evaluation tasks, and downstream coreference resolution tasks.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2031 ◽  
Author(s):  
Taimoor Shakeel Sheikh ◽  
Yonghee Lee ◽  
Migyung Cho

Diagnosis of pathologies using histopathological images can be time-consuming when many images with different magnification levels need to be analyzed. State-of-the-art computer vision and machine learning methods can help automate the diagnostic pathology workflow and thus reduce the analysis time. Automated systems can also be more efficient and accurate, and can increase the objectivity of diagnosis by reducing operator variability. We propose a multi-scale input and multi-feature network (MSI-MFNet) model, which can learn the overall structures and texture features of different scale tissues by fusing multi-resolution hierarchical feature maps from the network’s dense connectivity structure. The MSI-MFNet predicts the probability of a disease on the patch and image levels. We evaluated the performance of our proposed model on two public benchmark datasets. Furthermore, through ablation studies of the model, we found that multi-scale input and multi-feature maps play an important role in improving the performance of the model. Our proposed model outperformed the existing state-of-the-art models by demonstrating better accuracy, sensitivity, and specificity.


2020 ◽  
Vol 34 (04) ◽  
pp. 4107-4114 ◽  
Author(s):  
Masoumeh Heidari Kapourchali ◽  
Bonny Banerjee

We propose an agent model capable of actively and selectively communicating with other agents to predict its environmental state efficiently. Selecting whom to communicate with is a challenge when the internal model of other agents is unobservable. Our agent learns a communication policy as a mapping from its belief state to with whom to communicate in an online and unsupervised manner, without any reinforcement. Human activity recognition from multimodal, multisource and heterogeneous sensor data is used as a testbed to evaluate the proposed model where each sensor is assumed to be monitored by an agent. The recognition accuracy on benchmark datasets is comparable to the state-of-the-art even though our model uses significantly fewer parameters and infers the state in a localized manner. The learned policy reduces number of communications. The agent is tolerant to communication failures and can recognize unreliable agents through their communication messages. To the best of our knowledge, this is the first work on learning communication policies by an agent for predicting its environmental state.


2021 ◽  
Author(s):  
Rami Mohawesh ◽  
Shuxiang Xu ◽  
Matthew Springer ◽  
Muna Al-Hawawreh ◽  
Sumbal Maqsood

Online reviews have a significant influence on customers' purchasing decisions for any products or services. However, fake reviews can mislead both consumers and companies. Several models have been developed to detect fake reviews using machine learning approaches. Many of these models have some limitations resulting in low accuracy in distinguishing between fake and genuine reviews. These models focused only on linguistic features to detect fake reviews and failed to capture the semantic meaning of the reviews. To deal with this, this paper proposes a new ensemble model that employs transformer architecture to discover the hidden patterns in a sequence of fake reviews and detect them precisely. The proposed approach combines three transformer models to improve the robustness of fake and genuine behaviour profiling and modelling to detect fake reviews. The experimental results using semi-real benchmark datasets showed the superiority of the proposed model over state-of-the-art models.


Sign in / Sign up

Export Citation Format

Share Document