Urban land cover and land use classification using multispectral sentinal-2 imagery

Author(s):  
Pramod Kumar Soni ◽  
Navin Rajpal ◽  
Rajesh Mehta ◽  
Vikash Kumar Mishra

Author(s):  
Trinh Le Hung

The classification of urban land cover/land use is a difficult task due to the complexity in the structure of the urban surface. This paper presents the method of combining of Sentinel 2 MSI and Landsat 8 multi-resolution satellite image data for urban bare land classification based on NDBaI index. Two images of Sentinel 2 and Landsat 8 acquired closely together, were used to calculate the NDBaI index, in which sortware infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) of Landsat 8 image were used to improve the spatial resolution of NDBaI index. The results obtained from two experimental areas showed that, the total accuracy of classifying bare land from the NDBaI index which calculated by the proposed method increased by about 6% compared to the method using the NDBaI index, which is calculated using only Landsat 8 data. The results obtained in this study contribute to improving the efficiency of using free remote sensing data in urban land cover/land use classification.



2019 ◽  
Author(s):  
Wenhui Kuang ◽  
Shu Zhang ◽  
Xiaoyong Li ◽  
Dengsheng Lu

Abstract. Accurate urban land-cover datasets are essential for mapping urban environments. However, a series of national urban land-cover data covering more than 15 years that characterizes urban environments is relatively rare. Here we propose a hierarchical principle on remotely sensed urban land-use/cover classification for mapping intra-urban structure/component dynamics. China's Land Use/cover Dataset (CLUD) is updated, delineating the imperviousness, green surface, waterbody and bare land conditions in cities. A new data subset called CLUD-Urban is created from 2000 to 2015 at five-year intervals with a medium spatial resolution (30 m). The first step is a prerequisite to extract the vector boundaries covered with urban areas from CLUD. A new method is then proposed using logistic regression between urban impervious surface area (ISA) and the annual maximum Normalized Difference Vegetation Index (NDVI) value retrieved from Landsat images based on a big-data platform with Google Earth Engine. National ISA and urban green space (UGS) fraction datasets for China are generated at 30-meter resolution with five-year intervals from 2000 to 2015. The overall classification accuracy of national urban areas is 92 %. The root mean square error values of ISA and UGS fractions are 0.10 and 0.14, respectively. The datasets indicate that the total urban area of China was 6.28 × 104 km2 in 2015, with average fractions of 70.70 % and 26.54 % for ISA and UGS, respectively. The ISA and UGS increased between 2000 and 2015 with unprecedented annual rates of 1,311.13 km2/yr and 405.30 km2/yr, respectively. CLUD-Urban can be used to enhance our understanding of urbanization impacts on ecological and regional climatic conditions and urban dwellers' environments. CLUD-Urban can be applied in future researches on urban environmental research and practices in the future. The datasets can be downloaded from https://doi.org/10.5281/zenodo.2644932.



2020 ◽  
Vol 12 (19) ◽  
pp. 3254
Author(s):  
Zhou Huang ◽  
Houji Qi ◽  
Chaogui Kang ◽  
Yuelong Su ◽  
Yu Liu

Urban land use mapping is crucial for effective urban management and planning due to the rapid change of urban processes. State-of-the-art approaches rely heavily on the socioeconomic, topographical, infrastructural and land cover information of urban environments via feeding them into ad hoc classifiers for land use classification. Yet, the major challenge lies in the lack of a universal and reliable approach for the extraction and combination of physical and socioeconomic features derived from remote sensing imagery and social sensing data. This article proposes an ensemble-learning-approach-based solution of integrating a rich body of features derived from high resolution satellite images, street-view images, building footprints, points-of-interest (POIs) and social media check-ins for the urban land use mapping task. The proposed approach can statistically differentiate the importance of input feature variables and provides a good explanation for the relationships between land cover, socioeconomic activities and land use categories. We apply the proposed method to infer the land use distribution in fine-grained spatial granularity within the Fifth Ring Road of Beijing and achieve an average classification accuracy of 74.2% over nine typical land use types. The results also indicate that our model outperforms several alternative models that have been widely utilized as baselines for land use classification.



2013 ◽  
Vol 2013 (1) ◽  
pp. 3896
Author(s):  
Feng-Chi Liao ◽  
Ming-Jen Cheng ◽  
Reuy-Lung Hwang ◽  
Wen-Shan Yang


Author(s):  
J. R. Bergado ◽  
C. Persello ◽  
A. Stein

Abstract. Updated information on urban land use allows city planners and decision makers to conduct large scale monitoring of urban areas for sustainable urban growth. Remote sensing data and classification methods offer an efficient and reliable way to update such land use maps. Features extracted from land cover maps are helpful on performing a land use classification task. Such prior information can be embedded in the design of a deep learning based land use classifier by applying a multitask learning setup—simultaneously solving a land use and a land cover classification task. In this study, we explore a fully convolutional multitask network to classify urban land use from very high resolution (VHR) imagery. We experimented with three different setups of the fully convolutional network and compared it against a baseline random forest classifier. The first setup is a standard network only predicting the land use class of each pixel in the image. The second setup is a multitask network that concatenates the land use and land cover class labels in the same output layer of the network while the other setup accept as an input the land cover predictions, predicted by a subpart of the network, concatenated to the original input image patches. The two deep multitask networks outperforms the other two classifiers by at least 30% in average F1-score.



Author(s):  
Cecilie S. Svenningsen ◽  
Diana E. Bowler ◽  
Susanne Hecker ◽  
Jesper Bladt ◽  
Volker Grescho ◽  
...  

AbstractRecent studies report declines in biomass, abundance and diversity of terrestrial insect groups. While anthropogenic land use is one likely contributor to this decline, studies assessing land cover as a driver of insect dynamics are rare and mostly restricted in spatial scale and types of land cover. In this study, we used rooftop-mounted car nets in a citizen science project (‘InsectMobile’) to allow for large-scale geographic sampling of flying insects across Denmark and parts of Germany. Citizen scientists sampled insects along 278 10 km routes in urban, farmland and semi-natural (grassland, wetland and forest) landscapes in the summer of 2018. We assessed the importance of local to landscape-scale effects and land use intensity by relating insect biomass to land cover in buffers of 50, 250, 500 and 1000 m along the routes. We found a negative association of urban cover and a positive association of farmland on insect biomass at a landscape-scale (1000 m buffer) in both countries. In Denmark, we also found positive effects of all semi-natural land covers, i.e. grassland (largest at the landscape-scale, 1000 m), forests (largest at intermediate scales, 250 m), and wetlands (largest at the local-scale, 50 m). The negative association of insect biomass with urban land cover and positive association with farmland were not clearly modified by any variable associated with land use intensity. Our results show that land cover has an impact on flying insect biomass with the magnitude of this effect varying across spatial scales. Since we consistently found negative effects of urban land cover, our findings highlight the need for the conservation of semi-natural areas, such as wetlands, grasslands and forests, in Europe.



2021 ◽  
Vol 13 (1) ◽  
pp. 63-82
Author(s):  
Wenhui Kuang ◽  
Shu Zhang ◽  
Xiaoyong Li ◽  
Dengsheng Lu

Abstract. Accurate and timely maps of urban underlying land properties at the national scale are of significance in improving habitat environment and achieving sustainable development goals. Urban impervious surface (UIS) and urban green space (UGS) are two core components for characterizing urban underlying environments. However, the UIS and UGS are often mosaicked in the urban landscape with complex structures and composites. The “hard classification” or binary single type cannot be used effectively to delineate spatially explicit urban land surface property. Although six mainstream datasets on global or national urban land use and land cover products with a 30 m spatial resolution have been developed, they only provide the binary pattern or dynamic of a single urban land type, which cannot effectively delineate the quantitative components or structure of intra-urban land cover. Here we propose a new mapping strategy to acquire the multitemporal and fractional information of the essential urban land cover types at a national scale through synergizing the advantage of both big data processing and human interpretation with the aid of geoknowledge. Firstly, the vector polygons of urban boundaries in 2000, 2005, 2010, 2015 and 2018 were extracted from China's Land Use/cover Dataset (CLUD) derived from Landsat images. Secondly, the national settlement and vegetation percentages were retrieved using a sub-pixel decomposition method through a random forest algorithm using the Google Earth Engine (GEE) platform. Finally, the products of China's UIS and UGS fractions (CLUD-Urban) at a 30 m resolution were developed in 2000, 2005, 2010, 2015 and 2018. We also compared our products with six existing mainstream datasets in terms of quality and accuracy. The assessment results showed that the CLUD-Urban product has higher accuracies in urban-boundary and urban-expansion detection than other products and in addition that the accurate UIS and UGS fractions were developed in each period. The overall accuracy of urban boundaries in 2000–2018 are over 92.65 %; and the correlation coefficient (R) and root mean square errors (RMSEs) of UIS and UGS fractions are 0.91 and 0.10 (UIS) and 0.89 and 0.11 (UGS), respectively. Our result indicates that 71 % of pixels of urban land were mosaicked by the UIS and UGS within cities in 2018; a single UIS classification may highly increase the mapping uncertainty. The high spatial heterogeneity of urban underlying covers was exhibited with average fractions of 68.21 % for UIS and 22.30 % for UGS in 2018 at a national scale. The UIS and UGS increased unprecedentedly with annual rates of 1605.56 and 627.78 km2 yr−1 in 2000–2018, driven by fast urbanization. The CLUD-Urban mapping can fill the knowledge gap in understanding impacts of the UIS and UGS patterns on ecosystem services and habitat environments and is valuable for detecting the hotspots of waterlogging and improving urban greening for planning and management practices. The datasets can be downloaded from https://doi.org/10.5281/zenodo.4034161 (Kuang et al., 2020a).



Sign in / Sign up

Export Citation Format

Share Document