Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

2011 ◽  
Vol 13 (7) ◽  
pp. 2981-2988 ◽  
Author(s):  
Garima Singhal ◽  
Riju Bhavesh ◽  
Kunal Kasariya ◽  
Ashish Ranjan Sharma ◽  
Rajendra Pal Singh
Author(s):  
Swati Goyal

Nanoparticles (NPs) are being widely used in different fields; therefore, there is growing interest in the development of a biological and environmental safety method for their production. Now a day’s chemical and physical methods are being used for the development of nanoparticle that is costly, time-consuming, and harmful for the environment. Plant-mediated synthesis of nanoparticles is a “Green chemistry” approach that connects different types of plants with nanotechnology. It has gained much more attention as a reliable, sustainable, and eco-friendly method for synthesizing a wide range of materials/nanomaterials. Plants are called nature’s “chemical factories” therefore, plants and plant extracts are the best options to produce different types of nanoparticles. In this present study, silver nanoparticles were synthesized by using leaf extract of Ocimum sanctum and aqueous silver nitrate solution through a simple and eco-friendly method. Then the developed silver nanoparticles were characterized by using different types of techniques such as Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-Vis spectrophotometer, and Fourier transforms infra-red (FTIR) spectroscopy. Their antimicrobial activity was screened against microbial culture, and it was found that the synthesized silver nanoparticles have potential applications in antibacterial activity.


Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.


Author(s):  
Meghashyama Bhat ◽  
Bidhayak Chakraborty ◽  
Raju Suresh Kumar ◽  
Abdulrahman I. Almansour ◽  
Natarajan Arumugam ◽  
...  

Author(s):  
Maphibanri Maring ◽  
Akila Elias ◽  
V. B. Narayanaswamy

<p>Nanotechnology is a field that is rapidly growing, making an impact in all spheres of human life. In the current study, silver nanoparticles were synthesized using the ethanolic leaf extract of <em>Achras sapota. </em>Characterization was carried out using UV-Visible spectroscopy, FTIR, XRD, SEM and TEM. The formation of AgNPs was confirmed through UV-Visible spectroscopy by the colour change. Based on the XRD pattern, the crystalline property of the AgNPs was established. The functional group present in the ethanolic leaf extract of <em>Achras sapota</em> is responsible for the reduction of the Ag<sup>+</sup> ion which was studied through FTIR. From the SEM and TEM analysis, it was found that the formed nanoparticles are spherical in shape and nano in size. The biosynthesized AgNPs was evaluated for its antimicrobial activity against gram positive bacteria (<em>S. aureus and L. bacillus</em>) and gram negative bacteria (<em>E. coli and P. aeruginosa</em>) using disc diffusion for preliminary screening of antimicrobial activity and dilution method for evaluation of antibacterial effectiveness and effect of silver nanoparticles on bacterial growth and it was found to exhibit potential antimicrobial activity. The biosynthesized AgNPs was found to be efficient in terms of reaction time as well as stability, eco-friendly and cost effective.</p>


Sign in / Sign up

Export Citation Format

Share Document