biosynthesized agnps
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 56)

H-INDEX

11
(FIVE YEARS 5)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 318
Author(s):  
Mohamed E. El-Hefnawy ◽  
Sultan Alhayyani ◽  
Mohsen M. El-Sherbiny ◽  
Mohamed I. Sakran ◽  
Mohamed H. El-Newehy

Fabrication of electrospun nanofibers based on the blending of modified natural polymer, hydroxyl propyl starch (HPS) as one of the most renewable resources, with synthetic polymers, such as polyurethane (PU) is of great potential for biomedical applications. The as-prepared nanofibers were used as antimicrobial sheets via blending with biosynthesized silver nanoparticles (AgNPs), which were prepared in a safe way with low cost using the extract of Nerium oleander leaves, which acted as a reducing and stabilizing agent as well. The biosynthesized AgNPs were fully characterized by various techniques (UV-vis, TEM, DLS, zeta potential and XRD). The obtained results from UV-vis depicted that the AgNPs appeared at a wavelength equal to 404 nm affirming the preparation of AgNPs when compared with the wavelength of extract (there are no observable peaks). The average particle size of the fabricated AgNPs that mediated with HPS exhibited a very small size (less than 5 nm) with excellent stability (more than −30 mv). In addition, the fabricated nanofibers were also fully characterized and the obtained data proved that the diameter of nanofibers was enlarged with increasing the concentration of AgNPs. Additionally, the findings illustrated that the pore sizes of electrospun sheets were in the range of 75 to 350 nm. The obtained results proved that the presence of HPS displayed a vital role in decreasing the contact angle of PU nanofibers and thus, increased the hydrophilicity of the net nanofibers. It is worthy to mention that the prepared nanofibers incorporated with AgNPs exhibited incredible antimicrobial activity against pathogenic microbes that actually presented in human wounds. Moreover, P. aeruginosa was the most sensitive species to the fabricated nanofibers compared to other tested ones. The minimal inhibitory concentrations (MICs) values of AgNPs-3@NFs against P. aeruginosa, and E. faecalis, were 250 and 500 mg/L within 15 min, respectively.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 56
Author(s):  
Nancy S. Younis ◽  
Maged E. Mohamed ◽  
Nermin A. El Semary

Green nanotechnology is now accepted as an environmentally friendly and cost-effective advance with various biomedical applications. The cyanobacterium Synechocystis sp. is a unicellular spherical cyanobacterium with photo- and hetero-trophic capabilities. This study investigates the ability of this cyanobacterial species to produce silver nanoparticles (AgNPs) and the wound-healing properties of the produced nanoparticles in diabetic animals. Methods: UV–visible and FT-IR spectroscopy and and electron microscopy techniques investigated AgNPs’ producibility by Synechocystis sp. when supplemented with silver ion source. The produced AgNPs were evaluated for their antimicrobial, anti-oxidative, anti-inflammatory, and diabetic wound healing along with their angiogenesis potential. Results: The cyanobacterium biosynthesized spherical AgNPs with a diameter range of 10 to 35 nm. The produced AgNPs exhibited wound-healing properties verified with increased contraction percentage, tensile strength and hydroxyproline level in incision diabetic wounded animals. AgNPs treatment decreased epithelialization period, amplified the wound closure percentage, and elevated collagen, hydroxyproline and hexosamine contents, which improved angiogenesis factors’ contents (HIF-1α, TGF-β1 and VEGF) in excision wound models. AgNPs intensified catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, and glutathione (GSH) and nitric oxide content and reduced malondialdehyde (MDA) level. IL-1β, IL-6, TNF-α, and NF-κB (the inflammatory mediators) were decreased with AgNPs’ topical application. Conclusion: Biosynthesized AgNPs via Synechocystis sp. exhibited antimicrobial, anti-oxidative, anti-inflammatory, and angiogenesis promoting effects in diabetic wounded animals.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 427
Author(s):  
Ashwini Naganthran ◽  
Gayathiri Verasoundarapandian ◽  
Farah Eryssa Khalid ◽  
Mas Jaffri Masarudin ◽  
Azham Zulkharnain ◽  
...  

Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.


Surfaces ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 91-112
Author(s):  
Samir Mustafa Hamad ◽  
Bushra Hussain Shnawa ◽  
Parwin Jalal Jalil ◽  
Mukhtar H. Ahmed

Background: Cystic echinococcosis (CE) is a highly prevalent parasitic disease resulting from the hydatid cyst of Echinococcus granulosus. It is also described as a zoonotic disease and considered a neglected tropical infection. Aim: This study assessed the antiparasitic activity of silver nanoparticles (AgNPs), against E. granulosus infection in BALB/c mice. Methods: The green synthesis of AgNPs was accomplished using Zizyphus spina-christi leaves. AgNPs were orally administered to BALB/c mice for acute short-term toxicity evaluation, in doses of 50 mg, 100 mg, 200 mg, and 300 mg/kg, and observations for toxic signs were carried out at 24, 48 h, and 14 days, continuously. Moreover, a total of 20 mice divided into two groups were intraperitoneally administered with 1500 viable protoscoleces for secondary hydatidosis infection. Results: The results showed that AgNPs did not induce any adverse effects or signs and no death, in either group of mice. The histopathological findings in the liver, kidneys, and intestine of the mice administered with AgNPs revealed mild histological effects compared with the control ones. The treated-infected mice showed a change in the appearance of the liver hydatid cysts from hyaline to milky cloudy compared with the untreated infected mice. Conclusion: Biosynthesized AgNPs showed anti-hydatic effects and are suggested as anti-echinococcal cyst treatment.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 161
Author(s):  
Waleed Ali Hailan ◽  
Khalid Mashay Al-Anazi ◽  
Mohammad Abul Farah ◽  
Mohammad Ajmal Ali ◽  
Ahmed Ali Al-Kawmani ◽  
...  

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is ranked as the third most common cause of cancer-related mortality worldwide. Schinus molle (S. mole) L. is an important medicinal plant that contains many bioactive compounds with pharmacological properties. The role of S. molle leaf extract in the biosynthesis of silver nanoparticles (AgNPs) was determined. The biosynthesized AgNPs were thoroughly characterized by UV–vis spectrophotometry, transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. Furthermore, the cytotoxic effect of the biosynthesized AgNPs using S. molle (SMAgNPs) against HepG2 liver cancer cells was investigated. Reactive oxygen species generation, apoptosis induction, DNA damage, and autophagy activity were analyzed. The results clearly showed that the biosynthesized silver nanoparticles inhibited the proliferation of HepG2 by significantly (p < 0.05) inducing oxidative stress, cytotoxicity, DNA damage, apoptosis, and autophagy in a dose- and time-dependent manner. These findings may encourage integrating the potential of natural products and the efficiency of silver nanoparticles for the fabrication of safe, environmentally friendly, and effective anticancer agents.


Author(s):  
Asmaa R. Ali ◽  
Haneya A.A. Anani ◽  
Fatma M. Selim

Background and Objectives: Silver nanoparticles (AgNPs) have been found to have multiple uses as antibacterial, anti- fungal and anti-biofilm agents because of their biological activities and safety. The present study was aimed to analyze the antimicrobial and anti-biofilm activities as well as the cytotoxic effect of AgNPs against different human pathogens. Materials and Methods: AgNPs were synthesized using cell free supernatants of Escherichia coli (ATCC 25922), En- terococcus faecalis (ATCC 19433), Pseudomonas aeruginosa (ATCC 27856), Enterobacter cloacae (ATCC 13047) and Penicillium oxalicum strain, then were analyzed using UV/Vis Spectral Analysis, Transmission electron microscopy (TEM). Scanning Electron Microscope (SEM) and Energy Dispersive-X-ray Spectroscopy (EDX) analysis. Antimicrobial activities of biosynthesized AgNPs were assessed with selected antimicrobial agents against multidrug resistant bacteria and candida. Anti-biofilm and cytotoxicity assays of these biosynthesized AgNPs were also done. Results: The synthesis of AgNPs were confirmed through observed color change and monitoring UV-Vis spectrum which showed homogeneous (little agglomeration) distribution of silver nanoparticles. TEM and SEM have shown that the parti- cle size ranged from 13 to 34 (nm) with spherical shape and a high signal with EDX analysis. Antibacterial and antifungal efficacy of antibiotics and fluconazole were increased in combination with biosynthesized AgNPs against resistant bacteria and candida. Significant reduction in biofilm formation was found better with Penicillium oxalicum AgNPs against biofilm forming bacteria. Conclusion: Penicillium oxalicum has the best effect towards synthesizing AgNPs, for antimicrobial activities against resis- tant bacteria and candida, in addition to anti-biofilm activities against biofilm forming Staphylococcus aureus and E. coli and the safest cytotoxicity effect on (MRC-5) cell line.


YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 385-396
Author(s):  
Sumathi R ◽  
◽  
Sivagamasundari K ◽  

The present work demonstrates the influence of plant extract composition (antioxidant and total phenolic content) on the size and morphology of the produced AgNPs. In this study, silver nanoparticles (AgNPs) were synthesized using aqueous flower extract of Allamanda neriifolia plant. The biosynthetic procedure was rapid and simple and was easily monitored via colour changes and examined AgNPs (AN-AgNPs) by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). The results obtained from various characterizations revealed that average size of synthesized AgNPs was 50 nm and in spherical structure. The anticancer potential of AN-AgNPs was investigated against human breast cancer cells (MCF-7). The cytotoxic response was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and morphological changes by apoptosis. The biosynthesized AgNPs-induced cell death in MCF- 7 cells suggested the anticancer potential of AN-AgNPs. Therefore, they may be used to treat the breast cancer cells.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3554
Author(s):  
Rasha M. M. Abou Elez ◽  
Ibrahim Elsohaby ◽  
Nashwa El-Gazzar ◽  
Hala M. N. Tolba ◽  
Eman N. Abdelfatah ◽  
...  

Salmonella enterica is one of the most common causes of foodborne illness worldwide. Contaminated poultry products, especially meat and eggs are the main sources of human salmonellosis. Thus, the aim of the present study was to determine prevalence, antimicrobial resistance profiles, virulence, and resistance genes of Salmonella Enteritidis (S. enteritidis) and Salmonella Typhimurium (S. Typhimurium) isolated from laying hens, table eggs, and humans, in Sharkia Governorate, Egypt. The antimicrobial activity of Biosynthesized Silver Nanoparticles (AgNPs) was also evaluated. Salmonella spp. were found in 19.3% of tested samples with laying hens having the highest isolation rate (33.1%). S. Enteritidis) (5.8%), and S. Typhimurium (2.8%) were the dominant serotypes. All isolates were ampicillin resistant (100%); however, none of the isolates were meropenem resistant. Multidrug-resistant (MDR) was detected in 83.8% of the isolates with a multiple antibiotic resistance index of 0.21 to 0.57. Most isolates (81.1%) had at least three virulence genes (sopB, stn, and hilA) and none of the isolates harbored the pefA gene; four resistance genes (blaTEM, tetA, nfsA, and nfsB) were detected in 56.8% of the examined isolates. The AgNPs biosynthesized by Aspergillus niveus exhibit an absorption peak at 420 nm with an average size of 27 nm. AgNPs had a minimum inhibitory concentration of 5 µg/mL against S. enteritidis and S. typhimurium isolates and a minimum bactericidal concentration of 6 and 8 µg/mL against S. enteritidis and S. typhimurium isolates, respectively. The bacterial growth and gene expression of S. enteritidis and S. typhimurium isolates treated with AgNPs were gradually decreased as storage time was increased. In conclusion, this study indicates that S. enteritidis and S. typhimurium isolated from laying hens, table eggs, and humans exhibits resistance to multiple antimicrobial classes. The biosynthesized AgNPs showed potential antimicrobial activity against MDR S. enteritidis and S. typhimurium isolates. However, studies to assess the antimicrobial effectiveness of the biosynthesized AgNPs in laying hen farms are warranted.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7325
Author(s):  
Denisa Batir-Marin ◽  
Cornelia Mircea ◽  
Monica Boev ◽  
Ana Flavia Burlec ◽  
Andreia Corciova ◽  
...  

The ethanolic extracts of three Equisetum species (E. pratense Ehrh., E. sylvaticum L. and E. telmateia Ehrh.) were used to reduce silver ions to silver nanoparticles (AgNPs). The synthesized AgNPs were characterized using UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) measurements. FTIR data revealed the functional groups of biomolecules involved in AgNPs synthesis, such as O-H, C-H, C=O, C-O, and C-C. EDX spectroscopy was used to highlight the presence of silver, while DLS spectroscopy provided information on the mean diameter of AgNPs, that ranged from 74.4 to 314 nm. The negative Zeta potential values (−23.76 for Ep–AgNPs, −29.54 for Es–AgNPs and −20.72 for Et–AgNPs) indicate the stability of the obtained colloidal solution. The study also focused on establishing the photocatalytic activity of AgNPs, which is an important aspect in terms of removing organic dyes from the environment. The best photocatalytic activity was observed for AgNPs obtained from E. telmateia, which degraded malachite green in a proportion of 97.9%. The antioxidant action of the three AgNPs samples was highlighted comparatively through four tests, with the best overall antioxidant capacity being observed for AgNPs obtained using E. sylvaticum. Moreover, the biosynthesized AgNPs showed promising cytotoxic efficacy against cancerous cell line MG63, the AgNPs obtained from E. sylvaticum L. providing the best result, with a LD50 value around 1.5 mg/mL.


Sign in / Sign up

Export Citation Format

Share Document