Green Synthesis of Silver Nanoparticles by Allamanda cathartica L. Leaf Extract and Evaluation for Antimicrobial Activity

Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Vanaja ◽  
K. Paulkumar ◽  
M. Baburaja ◽  
S. Rajeshkumar ◽  
G. Gnanajobitha ◽  
...  

Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by usingMorinda tinctorialeaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.


2020 ◽  
Vol 16 (4) ◽  
pp. 449-459
Author(s):  
Varsha Yadav ◽  
Neha Kapoor ◽  
Soma M. Ghorai ◽  
Pradeep

Background: Biosynthesis of nanoparticles from aqueous leaf extract of ‘Selaginella bryopteris’ is a green chemistry approach and is considered to be one of the most efficient methods as it is devoid of toxic chemicals as well as provides natural capping agents for the stabilization of synthesized nanoparticles. ‘S.bryopteris’ also known as ‘Sanjeevani’ (in India), is thought to be prospective natural resource that possesses extraordinary pharmaceutical potential. Objective: S. bryopteris is exclusively native to India and has already been known for its expression of stress-associated genes and high levels of protective metabolites of sugars, phenolic compounds, and polyols. Its potential as an antibacterial agent is being elucidated. Methods: Different leaf extract volumes, silver nitrate (AgNO3) concentrations, and reaction time were investigated separately and the optimal conditions for the synthesis of AgNPs were suggested. The resulting AgNPs were characterized by various techniques like Ultraviolet-Visible (UV-Vis) Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD). Antibacterial assays were carried out by using both agar disk and well diffusion method. Results: The AgNPs synthesized in this process were found to have efficient antimicrobial activity against both Gram-positive as well as Gram-negative bacteria. The antibacterial efficacy of S. bryopteris was consciously tried on uropathogenic Escherichia coli (Gram-negative bacteria) and Bacillus megaterium (Gram-positive bacteria) which have the self-limiting food poisoning potential along with opportunistic uropathogenic bacterial strains namely Proteus mirabilis (Gram-negative bacteria) and a non-pathogenic Micrococcus luteus (Gram-positive bacteria) for comparison. Conclusion: S. bryopteris mediated silver nanoparticles’ synthesis is attempted for being cost-effective, eco-friendly and safe for human therapeutics.


2016 ◽  
Vol 16 (3) ◽  
pp. 195-201 ◽  
Author(s):  
Ragini Kumari ◽  
Girija Brahma ◽  
Sumit Rajak ◽  
Mukesh Singh ◽  
Santosh Kumar

Author(s):  
Meghashyama Bhat ◽  
Bidhayak Chakraborty ◽  
Raju Suresh Kumar ◽  
Abdulrahman I. Almansour ◽  
Natarajan Arumugam ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


Talanta ◽  
2016 ◽  
Vol 160 ◽  
pp. 735-744 ◽  
Author(s):  
Ayomide H. Labulo ◽  
Elijah T. Adesuji ◽  
Oyinade A. Dedeke ◽  
Olusola S. Bodede ◽  
Charles O. Oseghale ◽  
...  

Author(s):  
Sruthi Radhakrishnan

Green route for the synthesis of nanoparticles has become more acceptable than the other chemical as well as biological route. In the present study, silver nanoparticle is synthesized using ethanolic extract of Psidium guajava leaves. Further the synthesized silver nanoparticles were characterized by UV-Visible Spec, FT-IR, X-Ray Diffraction FESEM and E-DAX. The results of FT-IR provided evidence of the involvement of phytochemicals present in the leaf extract in the reduction of silver nitrate to silver nanoparticles. XRD confirmed the crystalline structure as well as shape of the synthesized nanoparticle as face-centred cubic. E-DAX profiling helped in determining the presence of elemental silver. The size of the nanoparticle procured by SEM analysis was found to be approximately 30-50 nm in size. Thus, the findings of this study showed that the plant assisted method for silver nanoparticle synthesis is more effective and further application level studies can shed lights on their use in healing of various human ailments.   


2011 ◽  
Vol 13 (7) ◽  
pp. 2981-2988 ◽  
Author(s):  
Garima Singhal ◽  
Riju Bhavesh ◽  
Kunal Kasariya ◽  
Ashish Ranjan Sharma ◽  
Rajendra Pal Singh

Jurnal Biota ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 78-85
Author(s):  
Trio Ageng Prayitno ◽  
Nuril Hidayati

The use of antimicrobials from plant extracts has not been used optimally to control pathogenic agents in dragon fruit plants. The purpose of this research was to determine the antimicrobial activity of zodia (Evodia suaveolens) leaf extracts on pathogenic agents of dragon fruit plants in vitro. The research method is laboratory research with Completely Randomized Design (CRD). The antimicrobial concentrations of zodia (E. suaveolens) leaf extract used six types including 50%, 60%, 70%, 80%, 90%, and 100% with four replications. The research sample was the leaf of zodia (E. suaveolens), Pseudomonas aeruginosa and Fusarium oxysporum strain Malang. Test the antimicrobial activity of zodia (E. suaveolens) leaf extracts on the growth of P. aeruginosa and F. oxysporum using the disc-diffusion method and wells method. The research instrument was used the observation sheet of the diameter of inhibition zone indicated by the clear zone. The diameter of inhibition zone data were analyzed using the One Way ANOVA test. The results showed that the antimicrobial activity of zodia (E. suaveolens) leaf extract significantly inhibited the growth of P. aeruginosa and F. oxysporum (P <0.05). These results recommend zodia (E. suaveolens) leaf extract as an antimicrobial agent for dragon fruit plant pathogens.


2018 ◽  
Vol 7 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Ramesh Vinayagam ◽  
Thivaharan Varadavenkatesan ◽  
Raja Selvaraj

Abstract:An environmentally benign method to synthesize silver nanoparticles (SNPs) using the leaf extract ofBridelia retusawas developed. The UV-Vis absorption spectrum of the synthesized SNPs displayed a surface plasmon peak at 420 nm. Scanning electron microscopy (SEM) revealed the irregular shaped nanoparticles, and energy dispersive X-ray (EDX) ascertained the presence of metallic silver by showing a strong signal at 3 eV. The crystalline structure of metallic silver was confirmed by X-ray diffraction (XRD). The mean size of the SNPs was calculated as 16.21 nm. Fourier infrared (FT-IR) spectroscopic studies displayed specific bands for various functional groups and affirmed the function of reduction and stabilization of SNPs. The stability was endorsed by the zeta potential value of −18.1 mV. The results evidenced that this leaf extract-mediated synthesis method is eco-friendly, rapid, and cheap. The catalytic power of the SNPs was investigated for Rhodamine B dye degradation. The SNPs completely degraded Rhodamine B within 9 min; thus, the dye degradation process was very rapid. The pseudo-first order degradation constant was found out to be 0.1323 min−1. This paves the way for the future development of novel nano-catalysts to reduce environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document