In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue

2016 ◽  
Vol 127 (3) ◽  
pp. 473-482 ◽  
Author(s):  
Sven R. Kantelhardt ◽  
Darius Kalasauskas ◽  
Karsten König ◽  
Ella Kim ◽  
Martin Weinigel ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mikael T. Erkkilä ◽  
David Reichert ◽  
Johanna Gesperger ◽  
Barbara Kiesel ◽  
Thomas Roetzer ◽  
...  

AbstractMaximal safe tumor resection remains the key prognostic factor for improved prognosis in brain tumor patients. Despite 5-aminolevulinic acid-based fluorescence guidance the neurosurgeon is, however, not able to visualize most low-grade gliomas (LGG) and infiltration zone of high-grade gliomas (HGG). To overcome the need for a more sensitive visualization, we investigated the potential of macroscopic, wide-field fluorescence lifetime imaging of nicotinamide adenine dinucleotide (NADH) and protoporphyrin IX (PPIX) in selected human brain tumors. For future intraoperative use, the imaging system offered a square field of view of 11 mm at 250 mm free working distance. We performed imaging of tumor tissue ex vivo, including LGG and HGG as well as brain metastases obtained from 21 patients undergoing fluorescence-guided surgery. Half of all samples showed visible fluorescence during surgery, which was associated with significant increase in PPIX fluorescence lifetime. While the PPIX lifetime was significantly different between specific tumor tissue types, the NADH lifetimes did not differ significantly among them. However, mainly necrotic areas exhibited significantly lower NADH lifetimes compared to compact tumor in HGG. Our pilot study indicates that combined fluorescence lifetime imaging of NADH/PPIX represents a sensitive tool to visualize brain tumor tissue not detectable with conventional 5-ALA fluorescence.


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27442 ◽  
Author(s):  
Ana Gonzalez-Segura ◽  
Jose Manuel Morales ◽  
Jose Manuel Gonzalez-Darder ◽  
Ramon Cardona-Marsal ◽  
Concepcion Lopez-Gines ◽  
...  

2014 ◽  
Vol 20 (13) ◽  
pp. 3531-3539 ◽  
Author(s):  
Yasaman Ardeshirpour ◽  
Victor Chernomordik ◽  
Moinuddin Hassan ◽  
Rafal Zielinski ◽  
Jacek Capala ◽  
...  

2020 ◽  
Author(s):  
Xingbo Yang ◽  
Daniel J. Needleman

AbstractMitochondria are central to metabolism and their dysfunctions are associated with many diseases1–9. Metabolic flux, the rate of turnover of molecules through a metabolic pathway, is one of the most important quantities in metabolism, but it remains a challenge to measure spatiotemporal variations in mitochondrial metabolic fluxes in living cells. Fluorescence lifetime imaging microscopy (FLIM) of NADH is a label-free technique that is widely used to characterize the metabolic state of mitochondria in vivo10–18. However, the utility of this technique has been limited by the inability to relate FLIM measurement to the underlying metabolic activities in mitochondria. Here we show that, if properly interpreted, FLIM of NADH can be used to quantitatively measure the flux through a major mitochondrial metabolic pathway, the electron transport chain (ETC), in vivo with subcellular resolution. This result is based on the use of a coarse-grained NADH redox model, which we test in mouse oocytes subject to a wide variety of perturbations by comparing predicted fluxes to direct biochemical measurements and by self-consistency criterion. Using this method, we discovered a subcellular spatial gradient of mitochondrial metabolic flux in mouse oocytes. We showed that this subcellular variation in mitochondrial flux correlates with a corresponding subcellular variation in mitochondrial membrane potential. The developed model, and the resulting procedure for analyzing FLIM of NADH, are valid under nearly all circumstances of biological interest. Thus, this approach is a general procedure to measure metabolic fluxes dynamically in living cells, with subcellular resolution.


2018 ◽  
Vol 38 (4) ◽  
pp. 966-974 ◽  
Author(s):  
Piotr Sawosz ◽  
Stanislaw Wojtkiewicz ◽  
Michal Kacprzak ◽  
Elzbieta Zieminska ◽  
Magdalena Morawiec ◽  
...  

2020 ◽  
Vol 8 (3) ◽  
pp. 034003
Author(s):  
Deborah S Barkauskas ◽  
Gregory Medley ◽  
Xiaowen Liang ◽  
Yousuf H Mohammed ◽  
Camilla A Thorling ◽  
...  

2019 ◽  
Vol 10 (15) ◽  
pp. 4227-4235 ◽  
Author(s):  
Yingying Ning ◽  
Shengming Cheng ◽  
Jing-Xiang Wang ◽  
Yi-Wei Liu ◽  
Wei Feng ◽  
...  

Lanthanide complex was successfully applied in the design of pH-responsive NIR τ probe for quantitative in vivo imaging.


Sign in / Sign up

Export Citation Format

Share Document