scholarly journals Reactive Oxygen Species: Beyond Their Reactive Behavior

2021 ◽  
Vol 46 (1) ◽  
pp. 77-87
Author(s):  
Arnaud Tauffenberger ◽  
Pierre J. Magistretti

AbstractCellular homeostasis plays a critical role in how an organism will develop and age. Disruption of this fragile equilibrium is often associated with health degradation and ultimately, death. Reactive oxygen species (ROS) have been closely associated with health decline and neurological disorders, such as Alzheimer’s disease or Parkinson’s disease. ROS were first identified as by-products of the cellular activity, mainly mitochondrial respiration, and their high reactivity is linked to a disruption of macromolecules such as proteins, lipids and DNA. More recent research suggests more complex function of ROS, reaching far beyond the cellular dysfunction. ROS are active actors in most of the signaling cascades involved in cell development, proliferation and survival, constituting important second messengers. In the brain, their impact on neurons and astrocytes has been associated with synaptic plasticity and neuron survival. This review provides an overview of ROS function in cell signaling in the context of aging and degeneration in the brain and guarding the fragile balance between health and disease.


2021 ◽  
Author(s):  
Johnson Olaleye Oladele ◽  
Adenike T. Oladiji ◽  
Oluwaseun Titilope Oladele ◽  
Oyedotun M. Oyeleke

Neurodegenerative diseases are debilitating disorders which compromise motor or cognitive functions and are rapidly becoming a global communal disorder with over 46.8 million people suffering dementia worldwide. Aetiological studies have showed that people who are exposed to agricultural, occupational and environmental toxic chemicals that can interfere and degenerate dopaminergic neurons are prone to developing neurodegenerative diseases such as Parkinson Disease. The complex pathogenesis of the neurodegenerative diseases remains largely unknown; however, mounting evidence suggests that oxidative stress, neuroinflammation, protein misfolding, and apoptosis are the hallmarks of the diseases. Reactive oxygen species (ROS) are chemically reactive molecules that have been implicated in the pathogenesis of neurodegenerative diseases. ROS play a critical role as high levels of oxidative stress are commonly observed in the brain of patients with neurodegenerative disorders. This chapter focus on the sources of ROS in the brain, its involvement in the pathogenesis of neurodegenerative diseases and possible ways to mitigate its damaging effects in the affected brain.



eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Matthew CW Oswald ◽  
Paul S Brooks ◽  
Maarten F Zwart ◽  
Amrita Mukherjee ◽  
Ryan JH West ◽  
...  

Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson’s disease-linked protein DJ-1β as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.





2020 ◽  
Vol 103 (6) ◽  
pp. 2100-2118
Author(s):  
Rong Wang ◽  
ChunLin Shi ◽  
Xiaoyang Wang ◽  
Ruizhen Li ◽  
Yan Meng ◽  
...  


2020 ◽  
Vol 21 (6) ◽  
pp. 1918 ◽  
Author(s):  
Clemens Gutmann ◽  
Richard Siow ◽  
Adam M. Gwozdz ◽  
Prakash Saha ◽  
Alberto Smith

Reactive oxygen species (ROS) have physiological roles as second messengers, but can also exert detrimental modifications on DNA, proteins and lipids if resulting from enhanced generation or reduced antioxidant defense (oxidative stress). Venous thrombus (DVT) formation and resolution are influenced by ROS through modulation of the coagulation, fibrinolysis, proteolysis and the complement system, as well as the regulation of effector cells such as platelets, endothelial cells, erythrocytes, neutrophils, mast cells, monocytes and fibroblasts. Many conditions that carry an elevated risk of venous thrombosis, such as the Antiphospholipid Syndrome, have alterations in their redox homeostasis. Dietary and pharmacological antioxidants can modulate several important processes involved in DVT formation, but their overall effect is unknown and there are no recommendations regarding their use. The development of novel antioxidant treatments that aim to abrogate the formation of DVT or promote its resolution will depend on the identification of targets that enable ROS modulation confined to their site of interest in order to prevent off-target effects on physiological redox mechanisms. Subgroups of patients with increased systemic oxidative stress might benefit from unspecific antioxidant treatment, but more clinical studies are needed to bring clarity to this issue.





2019 ◽  
Vol 317 (2) ◽  
pp. F444-F455 ◽  
Author(s):  
Agustin Gonzalez-Vicente ◽  
Nancy Hong ◽  
Jeffrey L. Garvin

Reactive oxygen species (ROS) play a critical role in regulating nephron transport both via transcellular and paracellular pathways under physiological and pathological circumstances. Here, we review the progress made in the past ~10 yr in understanding how ROS regulate solute and water transport in individual nephron segments. Our knowledge in this field is still rudimentary, with basic information lacking. This is most obvious when looking at the reported disparate effects of superoxide ([Formula: see text]) and H2O2 on proximal nephron transport, where there are no easy explanations as to how to reconcile the data. Similarly, we know almost nothing about the regulation of transport in thin descending and ascending limbs, information that is likely critical to understanding the urine concentrating mechanism. In the thick ascending limb, there is general agreement that ROS enhance transcellular reabsorption of NaCl, but we know very little about their effects on the paracellular pathway and therefore Ca2+ and Mg2+ transport. In the distal convoluted tubule, precious little is known. In the collecting duct, there is general agreement that ROS stimulate the epithelial Na+ channel.



Sign in / Sign up

Export Citation Format

Share Document