Implications of vortex initialization and model spin-up in tropical cyclone prediction using Advanced Research Weather Research and Forecasting Model

2014 ◽  
Vol 73 (2) ◽  
pp. 1043-1062 ◽  
Author(s):  
Desamsetti Srinivas ◽  
Dodla Venkata Bhaskar Rao
Author(s):  
Alessio Golzio ◽  
Silvia Ferrarese ◽  
Claudio Cassardo ◽  
Gugliemina Adele Diolaiuti ◽  
Manuela Pelfini

AbstractWeather forecasts over mountainous terrain are challenging due to the complex topography that is necessarily smoothed by actual local-area models. As complex mountainous territories represent 20% of the Earth’s surface, accurate forecasts and the numerical resolution of the interaction between the surface and the atmospheric boundary layer are crucial. We present an assessment of the Weather Research and Forecasting model with two different grid spacings (1 km and 0.5 km), using two topography datasets (NASA Shuttle Radar Topography Mission and Global Multi-resolution Terrain Elevation Data 2010, digital elevation models) and four land-cover-description datasets (Corine Land Cover, U.S. Geological Survey land-use, MODIS30 and MODIS15, Moderate Resolution Imaging Spectroradiometer land-use). We investigate the Ortles Cevadale region in the Rhaetian Alps (central Italian Alps), focusing on the upper Forni Glacier proglacial area, where a micrometeorological station operated from 28 August to 11 September 2017. The simulation outputs are compared with observations at this micrometeorological station and four other weather stations distributed around the Forni Glacier with respect to the latent heat, sensible heat and ground heat fluxes, mixing-layer height, soil moisture, 2-m air temperature, and 10-m wind speed. The different model runs make it possible to isolate the contributions of land use, topography, grid spacing, and boundary-layer parametrizations. Among the considered factors, land use proves to have the most significant impact on results.


2014 ◽  
Vol 31 (9) ◽  
pp. 2008-2014 ◽  
Author(s):  
Xin Zhang ◽  
Ying-Hwa Kuo ◽  
Shu-Ya Chen ◽  
Xiang-Yu Huang ◽  
Ling-Feng Hsiao

Abstract The nonlocal excess phase observation operator for assimilating the global positioning system (GPS) radio occultation (RO) sounding data has been proven by some research papers to produce significantly better analyses for numerical weather prediction (NWP) compared to the local refractivity observation operator. However, the high computational cost and the difficulties in parallelization associated with the nonlocal GPS RO operator deter its application in research and operational NWP practices. In this article, two strategies are designed and implemented in the data assimilation system for the Weather Research and Forecasting Model to demonstrate the capability of parallel assimilation of GPS RO profiles with the nonlocal excess phase observation operator. In particular, to solve the parallel load imbalance problem due to the uneven geographic distribution of the GPS RO observations, round-robin scheduling is adopted to distribute GPS RO observations among the processing cores to balance the workload. The wall clock time required to complete a five-iteration minimization on a demonstration Antarctic case with 106 GPS RO observations is reduced from more than 3.5 h with a single processing core to 2.5 min with 106 processing cores. These strategies present the possibility of application of the nonlocal GPS RO excess phase observation operator in operational data assimilation systems with a cutoff time limit.


Author(s):  
Reneta Dimitrova ◽  
Ashish Sharma ◽  
Harindra J. S. Fernando ◽  
Ismail Gultepe ◽  
Ventsislav Danchovski ◽  
...  

2020 ◽  
Vol 20 (12) ◽  
pp. 7393-7410 ◽  
Author(s):  
Jiani Tan ◽  
Joshua S. Fu ◽  
Gregory R. Carmichael ◽  
Syuichi Itahashi ◽  
Zhining Tao ◽  
...  

Abstract. This study compares the performance of 12 regional chemical transport models (CTMs) from the third phase of the Model Inter-Comparison Study for Asia (MICS-Asia III) on simulating the particulate matter (PM) over East Asia (EA) in 2010. The participating models include the Weather Research and Forecasting model coupled with Community Multiscale Air Quality (WRF-CMAQ; v4.7.1 and v5.0.2), the Regional Atmospheric Modeling System coupled with CMAQ (RAMS-CMAQ; v4.7.1 and v5.0.2), the Weather Research and Forecasting model coupled with chemistry (WRF-Chem; v3.6.1 and v3.7.1), Goddard Earth Observing System coupled with chemistry (GEOS-Chem), a non-hydrostatic model coupled with chemistry (NHM-Chem), the Nested Air Quality Prediction Modeling System (NAQPMS) and the NASA-Unified WRF (NU-WRF). This study investigates three model processes as the possible reasons for different model performances on PM. (1) Models perform very differently in the gas–particle conversion of sulfur (S) and oxidized nitrogen (N). The model differences in sulfur oxidation ratio (50 %) are of the same magnitude as that in SO42- concentrations. The gas–particle conversion is one of the main reasons for different model performances on fine mode PM. (2) Models without dust emission modules can perform well on PM10 at non-dust-affected sites but largely underestimate (up to 50 %) the PM10 concentrations at dust sites. The implementation of dust emission modules in the models has largely improved the model accuracies at dust sites (reduce model bias to −20 %). However, both the magnitude and distribution of dust pollution are not fully captured. (3) The amounts of modeled depositions vary among models by 75 %, 39 %, 21 % and 38 % for S wet, S dry, N wet and N dry depositions, respectively. Large inter-model differences are found in the washout ratios of wet deposition (at most 170 % in India) and dry deposition velocities (generally 0.3–2 cm s−1 differences over inland regions).


2009 ◽  
Vol 137 (2) ◽  
pp. 745-765 ◽  
Author(s):  
Kevin A. Hill ◽  
Gary M. Lackmann

Abstract The Weather Research and Forecasting Advanced Research Model (WRF-ARW) was used to perform idealized tropical cyclone (TC) simulations, with domains of 36-, 12-, and 4-km horizontal grid spacing. Tests were conducted to determine the sensitivity of TC intensity to the available surface layer (SL) and planetary boundary layer (PBL) parameterizations, including the Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ) schemes, and to horizontal grid spacing. Simulations were run until a quasi-steady TC intensity was attained. Differences in minimum central pressure (Pmin) of up to 35 hPa and maximum 10-m wind (V10max) differences of up to 30 m s−1 were present between a convection-resolving nested domain with 4-km grid spacing and a parent domain with cumulus parameterization and 36-km grid spacing. Simulations using 4-km grid spacing are the most intense, with the maximum intensity falling close to empirical estimates of maximum TC intensity. Sensitivity to SL and PBL parameterization also exists, most notably in simulations with 4-km grid spacing, where the maximum intensity varied by up to ∼10 m s−1 (V10max) or ∼13 hPa (Pmin). Values of surface latent heat flux (LHFLX) are larger in MYJ than in YSU at the same wind speeds, and the differences increase with wind speed, approaching 1000 W m−2 at wind speeds in excess of 55 m s−1. This difference was traced to a larger exchange coefficient for moisture, CQ, in the MYJ scheme. The exchange coefficients for sensible heat (Cθ) and momentum (CD) varied by <7% between the SL schemes at the same wind speeds. The ratio Cθ/CD varied by <5% between the schemes, whereas CQ/CD was up to 100% larger in MYJ, and the latter is theorized to contribute to the differences in simulated maximum intensity. Differences in PBL scheme mixing also likely played a role in the model sensitivity. Observations of the exchange coefficients, published elsewhere and limited to wind speeds <30 m s−1, suggest that CQ is too large in the MYJ SL scheme, whereas YSU incorporates values more consistent with observations. The exchange coefficient for momentum increases linearly with wind speed in both schemes, whereas observations suggest that the value of CD becomes quasi-steady beyond some critical wind speed (∼30 m s−1).


Sign in / Sign up

Export Citation Format

Share Document